Counting descents, rises, and levels, with prescribed first element, in words

Recently, Kitaev and Remmel refined the well-known permutation statistic ``descent'' by fixing parity of one of the descent's numbers which was extended and generalized in several ways in the literature. In this paper, we shall fix a set partition of the natural numbers ℕ, (ℕ 1...

Full description

Bibliographic Details
Main Authors: Sergey Kitaev, Toufik Mansour, Jeff Remmel
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2008-08-01
Series:Discrete Mathematics & Theoretical Computer Science
Online Access:http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/680
_version_ 1818551567364653056
author Sergey Kitaev
Toufik Mansour
Jeff Remmel
author_facet Sergey Kitaev
Toufik Mansour
Jeff Remmel
author_sort Sergey Kitaev
collection DOAJ
description Recently, Kitaev and Remmel refined the well-known permutation statistic ``descent'' by fixing parity of one of the descent's numbers which was extended and generalized in several ways in the literature. In this paper, we shall fix a set partition of the natural numbers ℕ, (ℕ 1, …, ℕ s), and we study the distribution of descents, levels, and rises according to whether the first letter of the descent, rise, or level lies in ℕ i over the set of words over the alphabet [k]= {1,…,k}. In particular, we refine and generalize some of the results by Burstein and Mansour.
first_indexed 2024-12-12T09:01:37Z
format Article
id doaj.art-19e9894456cd4eb09a12fc9b32b3f852
institution Directory Open Access Journal
issn 1462-7264
1365-8050
language English
last_indexed 2024-12-12T09:01:37Z
publishDate 2008-08-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-19e9894456cd4eb09a12fc9b32b3f8522022-12-22T00:29:49ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1462-72641365-80502008-08-01103Counting descents, rises, and levels, with prescribed first element, in wordsSergey KitaevToufik MansourJeff RemmelRecently, Kitaev and Remmel refined the well-known permutation statistic ``descent'' by fixing parity of one of the descent's numbers which was extended and generalized in several ways in the literature. In this paper, we shall fix a set partition of the natural numbers ℕ, (ℕ 1, …, ℕ s), and we study the distribution of descents, levels, and rises according to whether the first letter of the descent, rise, or level lies in ℕ i over the set of words over the alphabet [k]= {1,…,k}. In particular, we refine and generalize some of the results by Burstein and Mansour.http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/680
spellingShingle Sergey Kitaev
Toufik Mansour
Jeff Remmel
Counting descents, rises, and levels, with prescribed first element, in words
Discrete Mathematics & Theoretical Computer Science
title Counting descents, rises, and levels, with prescribed first element, in words
title_full Counting descents, rises, and levels, with prescribed first element, in words
title_fullStr Counting descents, rises, and levels, with prescribed first element, in words
title_full_unstemmed Counting descents, rises, and levels, with prescribed first element, in words
title_short Counting descents, rises, and levels, with prescribed first element, in words
title_sort counting descents rises and levels with prescribed first element in words
url http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/680
work_keys_str_mv AT sergeykitaev countingdescentsrisesandlevelswithprescribedfirstelementinwords
AT toufikmansour countingdescentsrisesandlevelswithprescribedfirstelementinwords
AT jeffremmel countingdescentsrisesandlevelswithprescribedfirstelementinwords