Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment

We introduce a novel method that combines satellite data, advanced clustering techniques, machine learning feature extraction, and statistical models to enhance fishery forecasting accuracy. Focusing on jumbo flying squid in the southeast Pacific Ocean near Peru, we utilize MODIS-Aqua and MODIS-Terr...

Full description

Bibliographic Details
Main Authors: Tianjiao Zhang, Jia Xin, Wei Yu, Hongchun Yuan, Liming Song, Zhuo Yang
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Fishes
Subjects:
Online Access:https://www.mdpi.com/2410-3888/9/3/81
_version_ 1827306212688920576
author Tianjiao Zhang
Jia Xin
Wei Yu
Hongchun Yuan
Liming Song
Zhuo Yang
author_facet Tianjiao Zhang
Jia Xin
Wei Yu
Hongchun Yuan
Liming Song
Zhuo Yang
author_sort Tianjiao Zhang
collection DOAJ
description We introduce a novel method that combines satellite data, advanced clustering techniques, machine learning feature extraction, and statistical models to enhance fishery forecasting accuracy. Focusing on jumbo flying squid in the southeast Pacific Ocean near Peru, we utilize MODIS-Aqua and MODIS-Terra satellite data on sea surface temperature (SST) to construct a deep convolutional embedded clustering (DCEC) model and extract the monthly SST features (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> based on an optimized number of clusters determined by the Davies–Bouldi index (DBI). We use the extracted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula> to construct a series of Generalized Additive Models (GAM) to forecast the catch per unit effort (CPUE) of jumbo flying squid within a spatial resolution of 0.5° × 0.5°. Our results demonstrate the following findings: (1) The SST feature clusters obtained through the DCEC model could capture the SST monthly variations; (2) The GAM models with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula> outperform the models with the traditional monthly average SST in terms of predictive accuracy; (3) Using both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula> and average SST together can further improve model performance. This study demonstrates the effectiveness of the DCEC combined with DBI in extracting marine environmental features and highlights the ocean environment feature extraction method to enhance the precision and reliability of fishery forecasting models.
first_indexed 2024-04-24T18:17:41Z
format Article
id doaj.art-19ed84a4b39a49b08ce5ae4e2df0e7dd
institution Directory Open Access Journal
issn 2410-3888
language English
last_indexed 2024-04-24T18:17:41Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Fishes
spelling doaj.art-19ed84a4b39a49b08ce5ae4e2df0e7dd2024-03-27T13:38:16ZengMDPI AGFishes2410-38882024-02-01938110.3390/fishes9030081Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean EnvironmentTianjiao Zhang0Jia Xin1Wei Yu2Hongchun Yuan3Liming Song4Zhuo Yang5College of Information Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Information Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Information Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Information Technology, Shanghai Ocean University, Shanghai 201306, ChinaWe introduce a novel method that combines satellite data, advanced clustering techniques, machine learning feature extraction, and statistical models to enhance fishery forecasting accuracy. Focusing on jumbo flying squid in the southeast Pacific Ocean near Peru, we utilize MODIS-Aqua and MODIS-Terra satellite data on sea surface temperature (SST) to construct a deep convolutional embedded clustering (DCEC) model and extract the monthly SST features (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> based on an optimized number of clusters determined by the Davies–Bouldi index (DBI). We use the extracted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula> to construct a series of Generalized Additive Models (GAM) to forecast the catch per unit effort (CPUE) of jumbo flying squid within a spatial resolution of 0.5° × 0.5°. Our results demonstrate the following findings: (1) The SST feature clusters obtained through the DCEC model could capture the SST monthly variations; (2) The GAM models with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula> outperform the models with the traditional monthly average SST in terms of predictive accuracy; (3) Using both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula> and average SST together can further improve model performance. This study demonstrates the effectiveness of the DCEC combined with DBI in extracting marine environmental features and highlights the ocean environment feature extraction method to enhance the precision and reliability of fishery forecasting models.https://www.mdpi.com/2410-3888/9/3/81deep convolutional embedded clusteringDavies–Bouldi indexmachine learningfishery forecast
spellingShingle Tianjiao Zhang
Jia Xin
Wei Yu
Hongchun Yuan
Liming Song
Zhuo Yang
Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment
Fishes
deep convolutional embedded clustering
Davies–Bouldi index
machine learning
fishery forecast
title Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment
title_full Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment
title_fullStr Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment
title_full_unstemmed Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment
title_short Predicting the Fishery Ground of Jumbo Flying Squid (<i>Dosidicus gigas</i>) off Peru by Extracting Features of the Ocean Environment
title_sort predicting the fishery ground of jumbo flying squid i dosidicus gigas i off peru by extracting features of the ocean environment
topic deep convolutional embedded clustering
Davies–Bouldi index
machine learning
fishery forecast
url https://www.mdpi.com/2410-3888/9/3/81
work_keys_str_mv AT tianjiaozhang predictingthefisherygroundofjumboflyingsquididosidicusgigasioffperubyextractingfeaturesoftheoceanenvironment
AT jiaxin predictingthefisherygroundofjumboflyingsquididosidicusgigasioffperubyextractingfeaturesoftheoceanenvironment
AT weiyu predictingthefisherygroundofjumboflyingsquididosidicusgigasioffperubyextractingfeaturesoftheoceanenvironment
AT hongchunyuan predictingthefisherygroundofjumboflyingsquididosidicusgigasioffperubyextractingfeaturesoftheoceanenvironment
AT limingsong predictingthefisherygroundofjumboflyingsquididosidicusgigasioffperubyextractingfeaturesoftheoceanenvironment
AT zhuoyang predictingthefisherygroundofjumboflyingsquididosidicusgigasioffperubyextractingfeaturesoftheoceanenvironment