Half-Life Extension and Biodistribution Modulation of Biotherapeutics via Red Blood Cell Hitch-Hiking with Novel Anti-Band 3 Single-Domain Antibodies
Small therapeutic proteins are receiving increased interest as therapeutic drugs; however, their clinical success has been limited due to their rapid elimination. Here, we report a half-life extension strategy via strategy via red blood cell red blood cell (RBC) hitch-hiking. This manuscript details...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/1/475 |
Summary: | Small therapeutic proteins are receiving increased interest as therapeutic drugs; however, their clinical success has been limited due to their rapid elimination. Here, we report a half-life extension strategy via strategy via red blood cell red blood cell (RBC) hitch-hiking. This manuscript details the development and characterization of novel anti-RBC single-domain antibodies (sdAbs), their genetic fusion to therapeutic antibody fragments (TAF) as bispecific fusion constructs, and their influence on TAF pharmacokinetics and biodistribution. Several sdAbs specific to the band 3 antigen were generated via phage-display technology. Binding affinity to RBCs was assessed via flow cytometry. Affinity maturation via random mutagenesis was carried out to improve the binding affinity of the sdAbs. Bi-specific constructs were generated by fusing the anti-RBC sdAbs with anti-tissue necrosis factor alpha (TNF-α) TAF via the use of a glycine-serine flexible linker, and assessments for binding were performed via enzyme-linked immunosorbent assay and flow cytometry. Pharmacokinetics of anti-RBC sdAbs and fusion constructs were evaluated following intravenous bolus dosing in mice at a 1 mg/kg dose. Two RBC-binding sdAbs, RB12 and RE8, were developed. These two clones showed high binding affinity to human RBC with an estimated K<sub>D</sub> of 17.7 nM and 23.6 nM and low binding affinity to mouse RBC with an estimated K<sub>D</sub> of 335 nM and 528 nM for RB12 and RE8, respectively. Two derivative sdAbs, RMA1, and RMC1, with higher affinities against mouse RBC, were generated via affinity maturation (K<sub>D</sub> of 66.9 nM and 30.3 nM, respectively). Pharmacokinetic investigations in mice demonstrated prolonged circulation half-life of an anti-RBC-TNF-α bispecific construct (75 h) compared to a non-RBC binding control (1.3 h). In summary, the developed anti-RBC sdAbs and fusion constructs have demonstrated high affinity in vitro, and sufficient half-life extension in vivo. |
---|---|
ISSN: | 1661-6596 1422-0067 |