POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES

We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $n\geqslant 3$, $\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$$=f(x)$ almost everywhere with respect to Lebesgue meas...

Full description

Bibliographic Details
Main Authors: XIUMIN DU, LARRY GUTH, XIAOCHUN LI, RUIXIANG ZHANG
Format: Article
Language:English
Published: Cambridge University Press 2018-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509418000117/type/journal_article
Description
Summary:We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $n\geqslant 3$, $\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$$=f(x)$ almost everywhere with respect to Lebesgue measure for all $f\in H^{s}(\mathbb{R}^{n})$ provided that $s>(n+1)/2(n+2)$. The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.
ISSN:2050-5094