Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes

The question is still open as to whether there exist infinitely many Fermat primes or infinitely many composite Fermat numbers. The same question concerning Mersenne numbers is also unanswered. Extending some recent results of Megrelishvili and the author, we characterize the Fermat primes and the M...

Full description

Bibliographic Details
Main Author: Menachem Shlossberg
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/6/540
_version_ 1797596076296896512
author Menachem Shlossberg
author_facet Menachem Shlossberg
author_sort Menachem Shlossberg
collection DOAJ
description The question is still open as to whether there exist infinitely many Fermat primes or infinitely many composite Fermat numbers. The same question concerning Mersenne numbers is also unanswered. Extending some recent results of Megrelishvili and the author, we characterize the Fermat primes and the Mersenne primes in terms of the topological minimality of some matrix groups. This is achieved by showing, among other things, that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">F</mi></semantics></math></inline-formula> is a subfield of a local field of characteristic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>≠</mo><mn>2</mn></mrow></semantics></math></inline-formula>, then the special upper triangular group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ST</mi><mo>+</mo></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo></mrow></semantics></math></inline-formula> is minimal precisely when the special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SL</mo><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo></mrow></semantics></math></inline-formula> is. We provide criteria for the minimality (and total minimality) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SL</mo><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ST</mi><mo>+</mo></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">F</mi></semantics></math></inline-formula> is a subfield of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">F</mi><mi>π</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">F</mi><mi>c</mi></msub></semantics></math></inline-formula> be the set of Fermat primes and the set of composite Fermat numbers, respectively. As our main result, we prove that the following conditions are equivalent for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">A</mi><mo>∈</mo><mo>{</mo><msub><mi mathvariant="script">F</mi><mi>π</mi></msub><mo>,</mo><msub><mi mathvariant="script">F</mi><mi>c</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula> is finite; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi mathvariant="double-struck">F</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="script">A</mi></mrow></msub><mo form="prefix">SL</mo><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>−</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Q</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the Gaussian rational field; and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi mathvariant="double-struck">F</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="script">A</mi></mrow></msub><msup><mi>ST</mi><mo>+</mo></msup><mrow><mo>(</mo><msub><mi mathvariant="double-struck">F</mi><mi>n</mi></msub><mo>−</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal. Similarly, denote by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">M</mi><mi>π</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">M</mi><mi>c</mi></msub></semantics></math></inline-formula> the set of Mersenne primes and the set of composite Mersenne numbers, respectively, and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>∈</mo><mo>{</mo><msub><mi mathvariant="script">M</mi><mi>π</mi></msub><mo>,</mo><msub><mi mathvariant="script">M</mi><mi>c</mi></msub><mo>}</mo><mo>.</mo></mrow></semantics></math></inline-formula> Then the following conditions are equivalent: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">B</mi></semantics></math></inline-formula> is finite; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi>M</mi><mi>p</mi></msub><mo>∈</mo><mi mathvariant="script">B</mi></mrow></msub><mo form="prefix">SL</mo><mrow><mo>(</mo><msub><mi>M</mi><mi>p</mi></msub><mo>+</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal; and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi>M</mi><mi>p</mi></msub><mo>∈</mo><mi mathvariant="script">B</mi></mrow></msub><msup><mi>ST</mi><mo>+</mo></msup><mrow><mo>(</mo><msub><mi>M</mi><mi>p</mi></msub><mo>+</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal.
first_indexed 2024-03-11T02:46:28Z
format Article
id doaj.art-1a0b5195b3734d57bd85e76f83a9fc02
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T02:46:28Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-1a0b5195b3734d57bd85e76f83a9fc022023-11-18T09:16:30ZengMDPI AGAxioms2075-16802023-05-0112654010.3390/axioms12060540Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne PrimesMenachem Shlossberg0School of Computer Science, Reichman University, Herzliya 4610101, IsraelThe question is still open as to whether there exist infinitely many Fermat primes or infinitely many composite Fermat numbers. The same question concerning Mersenne numbers is also unanswered. Extending some recent results of Megrelishvili and the author, we characterize the Fermat primes and the Mersenne primes in terms of the topological minimality of some matrix groups. This is achieved by showing, among other things, that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">F</mi></semantics></math></inline-formula> is a subfield of a local field of characteristic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>≠</mo><mn>2</mn></mrow></semantics></math></inline-formula>, then the special upper triangular group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ST</mi><mo>+</mo></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo></mrow></semantics></math></inline-formula> is minimal precisely when the special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SL</mo><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo></mrow></semantics></math></inline-formula> is. We provide criteria for the minimality (and total minimality) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">SL</mo><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ST</mi><mo>+</mo></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">F</mi><mo>)</mo><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">F</mi></semantics></math></inline-formula> is a subfield of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">F</mi><mi>π</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">F</mi><mi>c</mi></msub></semantics></math></inline-formula> be the set of Fermat primes and the set of composite Fermat numbers, respectively. As our main result, we prove that the following conditions are equivalent for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">A</mi><mo>∈</mo><mo>{</mo><msub><mi mathvariant="script">F</mi><mi>π</mi></msub><mo>,</mo><msub><mi mathvariant="script">F</mi><mi>c</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula> is finite; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi mathvariant="double-struck">F</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="script">A</mi></mrow></msub><mo form="prefix">SL</mo><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>−</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Q</mi><mo>(</mo><mi>i</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the Gaussian rational field; and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi mathvariant="double-struck">F</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="script">A</mi></mrow></msub><msup><mi>ST</mi><mo>+</mo></msup><mrow><mo>(</mo><msub><mi mathvariant="double-struck">F</mi><mi>n</mi></msub><mo>−</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal. Similarly, denote by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">M</mi><mi>π</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">M</mi><mi>c</mi></msub></semantics></math></inline-formula> the set of Mersenne primes and the set of composite Mersenne numbers, respectively, and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">B</mi><mo>∈</mo><mo>{</mo><msub><mi mathvariant="script">M</mi><mi>π</mi></msub><mo>,</mo><msub><mi mathvariant="script">M</mi><mi>c</mi></msub><mo>}</mo><mo>.</mo></mrow></semantics></math></inline-formula> Then the following conditions are equivalent: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">B</mi></semantics></math></inline-formula> is finite; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi>M</mi><mi>p</mi></msub><mo>∈</mo><mi mathvariant="script">B</mi></mrow></msub><mo form="prefix">SL</mo><mrow><mo>(</mo><msub><mi>M</mi><mi>p</mi></msub><mo>+</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal; and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∏</mo><mrow><msub><mi>M</mi><mi>p</mi></msub><mo>∈</mo><mi mathvariant="script">B</mi></mrow></msub><msup><mi>ST</mi><mo>+</mo></msup><mrow><mo>(</mo><msub><mi>M</mi><mi>p</mi></msub><mo>+</mo><mn>1</mn><mo>,</mo><mi mathvariant="double-struck">Q</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is minimal.https://www.mdpi.com/2075-1680/12/6/540Fermat primesFermat numbersMersenne primesminimal groupspecial linear groupGaussian rational field
spellingShingle Menachem Shlossberg
Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
Axioms
Fermat primes
Fermat numbers
Mersenne primes
minimal group
special linear group
Gaussian rational field
title Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
title_full Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
title_fullStr Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
title_full_unstemmed Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
title_short Minimality Conditions Equivalent to the Finitude of Fermat and Mersenne Primes
title_sort minimality conditions equivalent to the finitude of fermat and mersenne primes
topic Fermat primes
Fermat numbers
Mersenne primes
minimal group
special linear group
Gaussian rational field
url https://www.mdpi.com/2075-1680/12/6/540
work_keys_str_mv AT menachemshlossberg minimalityconditionsequivalenttothefinitudeoffermatandmersenneprimes