Using Generalized Generation Distribution Factors in a MILP Model to Solve the Transmission-Constrained Unit Commitment Problem

This study proposes a mixed-integer linear programming (MILP) model to figure out the transmission-constrained direct current (DC)-based unit commitment (UC) problem using the generalized generation distribution factors (GGDF) for modeling the transmission network constraints. The UC problem has bee...

Full description

Bibliographic Details
Main Authors: Guillermo Gutierrez-Alcaraz, Victor H. Hinojosa
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/9/2232
Description
Summary:This study proposes a mixed-integer linear programming (MILP) model to figure out the transmission-constrained direct current (DC)-based unit commitment (UC) problem using the generalized generation distribution factors (GGDF) for modeling the transmission network constraints. The UC problem has been reformulated using these linear distribution factors without sacrificing optimality. Several test power systems (PJM 5-bus, IEEE-24, and 118-bus) have been used to validate the introduced formulation. Results demonstrate that the proposed approach is more compact and less computationally burdensome than the classical DC-based formulation, which is commonly employed in the technical literature to carry out the transmission network constraints. Therefore, there is a potential applicability of the accomplished methodology to carry out the UC problem applied to medium and large-scale electrical power systems.
ISSN:1996-1073