Small-molecule agonist AdipoRon alleviates diabetic retinopathy through the AdipoR1/AMPK/EGR4 pathway

Abstract Background Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative...

Full description

Bibliographic Details
Main Authors: Yihan Wang, Yujuan Liu, Junwei Fang, Xindan Xing, Hanying Wang, Xin Shi, Xinyi Liu, Tian Niu, Kun Liu
Format: Article
Language:English
Published: BMC 2024-01-01
Series:Journal of Translational Medicine
Subjects:
Online Access:https://doi.org/10.1186/s12967-023-04783-3
Description
Summary:Abstract Background Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. Results By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5ʹ adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. Conclusions This provides a new target for the early treatment of DR. Graphical Abstract
ISSN:1479-5876