Chiral quantum optics in photonic sawtooth lattices

Chiral quantum optics has become a burgeoning field due to its potential applications in quantum networks or quantum simulation of many-body physics. Current implementations are based on the interplay between local polarization and propagation direction of light in nanophotonic structures. In this m...

Full description

Bibliographic Details
Main Authors: Eduardo Sánchez-Burillo, Chao Wan, David Zueco, Alejandro González-Tudela
Format: Article
Language:English
Published: American Physical Society 2020-04-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.2.023003
Description
Summary:Chiral quantum optics has become a burgeoning field due to its potential applications in quantum networks or quantum simulation of many-body physics. Current implementations are based on the interplay between local polarization and propagation direction of light in nanophotonic structures. In this manuscript, we propose an alternative platform based on coupling quantum emitters to a photonic sawtooth lattice, a one-dimensional model with an effective flux per plaquette introduced by complex tunnelings. We study the dynamics emerging from such structured photonic bath and find the conditions to obtain quasiperfect directional emission when the emitters are resonant with the band. In addition, we find that the photons in this bath can also mediate complex emitter-emitter interactions tunable in range and phase when the emitters transition frequencies lie within a band gap. Since these effects do not rely on polarization, we propose an implementation based on circuit QED to observe this physics.
ISSN:2643-1564