Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte

We study in this article some statistical methods to fit some epidemiological parameters. We first consider a fit of the probability distribution which underlines the serial interval distribution of the COVID-19 on a given set of data collected on the viral shedding in patients with laboratory-confi...

Full description

Bibliographic Details
Main Authors: Solym M. Manou-Abi, Yousri Slaoui, Julien Balicchi
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Applied Mathematics and Statistics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fams.2022.870080/full
_version_ 1811315699456409600
author Solym M. Manou-Abi
Solym M. Manou-Abi
Yousri Slaoui
Julien Balicchi
author_facet Solym M. Manou-Abi
Solym M. Manou-Abi
Yousri Slaoui
Julien Balicchi
author_sort Solym M. Manou-Abi
collection DOAJ
description We study in this article some statistical methods to fit some epidemiological parameters. We first consider a fit of the probability distribution which underlines the serial interval distribution of the COVID-19 on a given set of data collected on the viral shedding in patients with laboratory-confirmed. The best-fit model of the non negative serial interval distribution is given by a mixture of two Gamma distributions with different shapes and rates. Thus, we propose a modified version of the generation time function of the package R0. Second, we estimate the time-varying reproduction number in Mayotte. Using a justified mathematical learning model, we estimate the transmission parameters range values during the outbreak together with a sensitivity analysis. Finally, using some regression and forecasting methods, we give some learning models of the hospitalized, intensive care, and death cases over a given period. We end with a discussion and the limit of this study together with some forthcoming theoretical developments.
first_indexed 2024-04-13T11:35:55Z
format Article
id doaj.art-1a261d145dfb40c4bf5224c173c3578d
institution Directory Open Access Journal
issn 2297-4687
language English
last_indexed 2024-04-13T11:35:55Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Applied Mathematics and Statistics
spelling doaj.art-1a261d145dfb40c4bf5224c173c3578d2022-12-22T02:48:27ZengFrontiers Media S.A.Frontiers in Applied Mathematics and Statistics2297-46872022-08-01810.3389/fams.2022.870080870080Estimation of Some Epidemiological Parameters With the COVID-19 Data of MayotteSolym M. Manou-Abi0Solym M. Manou-Abi1Yousri Slaoui2Julien Balicchi3Institut Montpelliérain Alexander Grothendieck, Univ. Montpellier, CNRS, Montpellier, FranceCentre Universitaire de Formation et de Recherche, Dembeni, FranceLaboratoire de Mathématiques et Applications, UMR CNRS 7031, Poitiers, FranceAgence Régionale de Santé de Mayotte, Centre Kinga, Mamoudzou, FranceWe study in this article some statistical methods to fit some epidemiological parameters. We first consider a fit of the probability distribution which underlines the serial interval distribution of the COVID-19 on a given set of data collected on the viral shedding in patients with laboratory-confirmed. The best-fit model of the non negative serial interval distribution is given by a mixture of two Gamma distributions with different shapes and rates. Thus, we propose a modified version of the generation time function of the package R0. Second, we estimate the time-varying reproduction number in Mayotte. Using a justified mathematical learning model, we estimate the transmission parameters range values during the outbreak together with a sensitivity analysis. Finally, using some regression and forecasting methods, we give some learning models of the hospitalized, intensive care, and death cases over a given period. We end with a discussion and the limit of this study together with some forthcoming theoretical developments.https://www.frontiersin.org/articles/10.3389/fams.2022.870080/fullhealth statisticsparameter estimationreproduction numberepidemiologymodeltransmission rates
spellingShingle Solym M. Manou-Abi
Solym M. Manou-Abi
Yousri Slaoui
Julien Balicchi
Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte
Frontiers in Applied Mathematics and Statistics
health statistics
parameter estimation
reproduction number
epidemiology
model
transmission rates
title Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte
title_full Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte
title_fullStr Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte
title_full_unstemmed Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte
title_short Estimation of Some Epidemiological Parameters With the COVID-19 Data of Mayotte
title_sort estimation of some epidemiological parameters with the covid 19 data of mayotte
topic health statistics
parameter estimation
reproduction number
epidemiology
model
transmission rates
url https://www.frontiersin.org/articles/10.3389/fams.2022.870080/full
work_keys_str_mv AT solymmmanouabi estimationofsomeepidemiologicalparameterswiththecovid19dataofmayotte
AT solymmmanouabi estimationofsomeepidemiologicalparameterswiththecovid19dataofmayotte
AT yousrislaoui estimationofsomeepidemiologicalparameterswiththecovid19dataofmayotte
AT julienbalicchi estimationofsomeepidemiologicalparameterswiththecovid19dataofmayotte