Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice
Abstract Background The regenerative ability of severed axons in the central nervous system is limited in mammals. However, after central nervous system injury, neural function is partially recovered by the formation of a compensatory neural circuit. In a mouse pyramidotomy model, axonal sprouting o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-07-01
|
Series: | BMC Genomics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12864-019-5974-9 |
_version_ | 1819083162378043392 |
---|---|
author | Hiroshi Tsujioka Toshihide Yamashita |
author_facet | Hiroshi Tsujioka Toshihide Yamashita |
author_sort | Hiroshi Tsujioka |
collection | DOAJ |
description | Abstract Background The regenerative ability of severed axons in the central nervous system is limited in mammals. However, after central nervous system injury, neural function is partially recovered by the formation of a compensatory neural circuit. In a mouse pyramidotomy model, axonal sprouting of the intact side of the corticospinal tract is observed in the spinal cord, and the axons make new synapses with the denervated side of propriospinal neurons. Moreover, this sprouting ability is enhanced in neonatal mice compared to that in adult mice. Myelin-associated molecules in the spinal cord or intrinsic factors in corticospinal neurons have been investigated in previous studies, but the factors that determine elevated sprouting ability in neonatal mice are not fully understood. Further, in the early phase after pyramidotomy, glial responses are observed in the spinal cord. To elucidate the basal difference in the spinal cord, we compared gene expression profiles of entire C4–7 cervical cord tissues between neonatal (injured at postnatal day 7) and adult (injured at 8 weeks of age) mice by RNA-sequencing. We also tried to identify discordant gene expression changes that might inhibit axonal sprouting in adult mice at the early phase (3 days) after pyramidotomy. Results A comparison of neonatal and adult sham groups revealed remarkable basal differences in the spinal cord, such as active neural circuit formation, cell proliferation, the development of myelination, and an immature immune system in neonatal mice compared to that observed in adult mice. Some inflammation-related genes were selectively expressed in adult mice after pyramidotomy, implying the possibility that these genes might be related to the low sprouting ability in adult mice. Conclusions This study provides useful information regarding the basal difference between neonatal and adult spinal cords and the possible differential response after pyramidotomy, both of which are necessary to understand why sprouting ability is increased in neonatal mice compared to that in adult mice. |
first_indexed | 2024-12-21T20:28:11Z |
format | Article |
id | doaj.art-1a2abfe75c854faf824cb3767938b355 |
institution | Directory Open Access Journal |
issn | 1471-2164 |
language | English |
last_indexed | 2024-12-21T20:28:11Z |
publishDate | 2019-07-01 |
publisher | BMC |
record_format | Article |
series | BMC Genomics |
spelling | doaj.art-1a2abfe75c854faf824cb3767938b3552022-12-21T18:51:19ZengBMCBMC Genomics1471-21642019-07-0120111710.1186/s12864-019-5974-9Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult miceHiroshi Tsujioka0Toshihide Yamashita1Department of Molecular Neuroscience, Graduate School of Medicine, Osaka UniversityDepartment of Molecular Neuroscience, Graduate School of Medicine, Osaka UniversityAbstract Background The regenerative ability of severed axons in the central nervous system is limited in mammals. However, after central nervous system injury, neural function is partially recovered by the formation of a compensatory neural circuit. In a mouse pyramidotomy model, axonal sprouting of the intact side of the corticospinal tract is observed in the spinal cord, and the axons make new synapses with the denervated side of propriospinal neurons. Moreover, this sprouting ability is enhanced in neonatal mice compared to that in adult mice. Myelin-associated molecules in the spinal cord or intrinsic factors in corticospinal neurons have been investigated in previous studies, but the factors that determine elevated sprouting ability in neonatal mice are not fully understood. Further, in the early phase after pyramidotomy, glial responses are observed in the spinal cord. To elucidate the basal difference in the spinal cord, we compared gene expression profiles of entire C4–7 cervical cord tissues between neonatal (injured at postnatal day 7) and adult (injured at 8 weeks of age) mice by RNA-sequencing. We also tried to identify discordant gene expression changes that might inhibit axonal sprouting in adult mice at the early phase (3 days) after pyramidotomy. Results A comparison of neonatal and adult sham groups revealed remarkable basal differences in the spinal cord, such as active neural circuit formation, cell proliferation, the development of myelination, and an immature immune system in neonatal mice compared to that observed in adult mice. Some inflammation-related genes were selectively expressed in adult mice after pyramidotomy, implying the possibility that these genes might be related to the low sprouting ability in adult mice. Conclusions This study provides useful information regarding the basal difference between neonatal and adult spinal cords and the possible differential response after pyramidotomy, both of which are necessary to understand why sprouting ability is increased in neonatal mice compared to that in adult mice.http://link.springer.com/article/10.1186/s12864-019-5974-9Axon sproutingPyramidotomyNeonatesRNA-sequencingMouse |
spellingShingle | Hiroshi Tsujioka Toshihide Yamashita Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice BMC Genomics Axon sprouting Pyramidotomy Neonates RNA-sequencing Mouse |
title | Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice |
title_full | Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice |
title_fullStr | Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice |
title_full_unstemmed | Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice |
title_short | Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice |
title_sort | comparison of gene expression profile of the spinal cord of sprouting capable neonatal and sprouting incapable adult mice |
topic | Axon sprouting Pyramidotomy Neonates RNA-sequencing Mouse |
url | http://link.springer.com/article/10.1186/s12864-019-5974-9 |
work_keys_str_mv | AT hiroshitsujioka comparisonofgeneexpressionprofileofthespinalcordofsproutingcapableneonatalandsproutingincapableadultmice AT toshihideyamashita comparisonofgeneexpressionprofileofthespinalcordofsproutingcapableneonatalandsproutingincapableadultmice |