A nutrition mathematical model to account for dietary supply and requirements of energy and nutrients for domesticated small ruminants: the development and evaluation of the Small Ruminant Nutrition System

A mechanistic model that predicts nutrient requirements and biological values of feeds for sheep (Cornell Net Carbohydrate and Protein System; CNCPS-S) was expanded to include goats and the name was changed to the Small Ruminant Nutrition System (SRNS). The SRNS uses animal and environmental factors...

Full description

Bibliographic Details
Main Authors: Luis Orlindo Tedeschi, Antonello Cannas, Danny Gene Fox
Format: Article
Language:English
Published: Sociedade Brasileira de Zootecnia 2008-07-01
Series:Revista Brasileira de Zootecnia
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008001300020
Description
Summary:A mechanistic model that predicts nutrient requirements and biological values of feeds for sheep (Cornell Net Carbohydrate and Protein System; CNCPS-S) was expanded to include goats and the name was changed to the Small Ruminant Nutrition System (SRNS). The SRNS uses animal and environmental factors to predict metabolizable energy (ME) and protein, and Ca and P requirements. Requirements for goats in the SRNS are predicted based on the equations developed for CNCPS-S, modified to account for specific requirements of goats, including maintenance, lactation, and pregnancy requirements, and body reserves. Feed biological values are predicted based on carbohydrate and protein fractions and their ruminal fermentation rates, forage, concentrate and liquid passage rates, and microbial growth. The evaluation of the SRNS for sheep using published papers (19 treatment means) indicated no mean bias (MB; 1.1 g/100 g) and low root mean square prediction error (RMSPE; 3.6 g/100g) when predicting dietary organic matter digestibility for diets not deficient in ruminal nitrogen. The SRNS accurately predicted gains and losses of shrunk body weight (SBW) of adult sheep (15 treatment means; MB = 5.8 g/d and RMSPE = 30 g/d) when diets were not deficient in ruminal nitrogen. The SRNS for sheep had MB varying from -34 to 1 g/d and RSME varying from 37 to 56 g/d when predicting average daily gain (ADG) of growing lambs (42 treatment means). The evaluation of the SRNS for goats based on literature data showed accurate predictions for ADG of kids (31 treatment means; RMSEP = 32.5 g/d; r2= 0.85; concordance correlation coefficient, CCC, = 0.91), daily ME intake (21 treatment means; RMSEP = 0.24 Mcal/d g/d; r2 = 0.99; CCC = 0.99), and energy balance (21 treatment means; RMSEP = 0.20 Mcal/d g/d; r2 = 0.87; CCC = 0.90) of goats. In conclusion, the SRNS for sheep can accurately predict dietary organic matter digestibility, ADG of growing lambs and changes in SBW of mature sheep. The SRNS for goats is suitable for predicting ME intake and the energy balance of lactating and non-lactating adult goats and the ADG of kids of dairy, meat, and indigenous breeds. The SRNS model is available at http://nutritionmodels.tamu.edu.
ISSN:1516-3598
1806-9290