Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia
This paper presents research results on forest decline in Serbia. The results were obtained through monitoring defoliation of 34 tree species at 130 sample plots during the period from 2004 to 2018. This research aimed to determine whether the occurrence of defoliation and tree mortality were caused...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/11/10/1286 |
_version_ | 1797496423413972992 |
---|---|
author | Goran Češljar Filip Jovanović Ljiljana Brašanac-Bosanac Ilija Đorđević Suzana Mitrović Saša Eremija Tatjana Ćirković-Mitrović Aleksandar Lučić |
author_facet | Goran Češljar Filip Jovanović Ljiljana Brašanac-Bosanac Ilija Đorđević Suzana Mitrović Saša Eremija Tatjana Ćirković-Mitrović Aleksandar Lučić |
author_sort | Goran Češljar |
collection | DOAJ |
description | This paper presents research results on forest decline in Serbia. The results were obtained through monitoring defoliation of 34 tree species at 130 sample plots during the period from 2004 to 2018. This research aimed to determine whether the occurrence of defoliation and tree mortality were caused by drought. Defoliation was assessed in 5% steps according to the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) methodology. All the trees recorded as dead were singled out, and annual mortality rates were calculated. To determine changes in air temperature and precipitation regimes during the study period, we processed and analysed climatic data related to air temperature and precipitation throughout the year and in the growing season at 28 main weather stations in Serbia. Tree mortality patterns were established by classifying trees into three groups. The first group of trees exhibited a gradual increase in defoliation during the last few years of monitoring, with dying as the final outcome. The second group was characterised by sudden death of trees. The third group of trees reached a higher degree of defoliation immediately after the first monitoring year, and the trees died after several years. Tree mortality rates were compared between years using the Standardised Precipitation Evaporation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), the most common methods used to monitor drought. The most intensive forest decline was recorded during the period from 2013 to 2016, when the largest percentage of the total number of all trees died. According to the annual mortality rates calculated for the three observation periods (2004–2008, 2009–2013, and 2014–2018) the highest forest decline rate was recorded in the period from 2014 to 2018, with no statistically significant difference between broadleaved and coniferous tree species. As the sample of coniferous species was small, the number of sample plots should be increased in order to achieve better systematic forest condition monitoring in Serbia. The analysis of the relationship between defoliation and climatic parameters proved the correlation between them. It was noted that the forest decline in Serbia was preceded by an extremely dry period with high temperatures from 2011 to 2013, supporting the hypothesis that it was caused by drought. We therefore conclude that these unfavourable climatic conditions had serious and long-term consequences on forest ecosystems in Serbia. |
first_indexed | 2024-03-10T03:03:25Z |
format | Article |
id | doaj.art-1a3bf9f7f6b94b45918f3eddc7d48eb8 |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-10T03:03:25Z |
publishDate | 2022-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-1a3bf9f7f6b94b45918f3eddc7d48eb82023-11-23T12:41:40ZengMDPI AGPlants2223-77472022-05-011110128610.3390/plants11101286Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in SerbiaGoran Češljar0Filip Jovanović1Ljiljana Brašanac-Bosanac2Ilija Đorđević3Suzana Mitrović4Saša Eremija5Tatjana Ćirković-Mitrović6Aleksandar Lučić7Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, SerbiaDepartment of Genetics, Plant Breeding, Seed and Nursery Production, Institute of Forestry, 11030 Belgrade, SerbiaThis paper presents research results on forest decline in Serbia. The results were obtained through monitoring defoliation of 34 tree species at 130 sample plots during the period from 2004 to 2018. This research aimed to determine whether the occurrence of defoliation and tree mortality were caused by drought. Defoliation was assessed in 5% steps according to the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) methodology. All the trees recorded as dead were singled out, and annual mortality rates were calculated. To determine changes in air temperature and precipitation regimes during the study period, we processed and analysed climatic data related to air temperature and precipitation throughout the year and in the growing season at 28 main weather stations in Serbia. Tree mortality patterns were established by classifying trees into three groups. The first group of trees exhibited a gradual increase in defoliation during the last few years of monitoring, with dying as the final outcome. The second group was characterised by sudden death of trees. The third group of trees reached a higher degree of defoliation immediately after the first monitoring year, and the trees died after several years. Tree mortality rates were compared between years using the Standardised Precipitation Evaporation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), the most common methods used to monitor drought. The most intensive forest decline was recorded during the period from 2013 to 2016, when the largest percentage of the total number of all trees died. According to the annual mortality rates calculated for the three observation periods (2004–2008, 2009–2013, and 2014–2018) the highest forest decline rate was recorded in the period from 2014 to 2018, with no statistically significant difference between broadleaved and coniferous tree species. As the sample of coniferous species was small, the number of sample plots should be increased in order to achieve better systematic forest condition monitoring in Serbia. The analysis of the relationship between defoliation and climatic parameters proved the correlation between them. It was noted that the forest decline in Serbia was preceded by an extremely dry period with high temperatures from 2011 to 2013, supporting the hypothesis that it was caused by drought. We therefore conclude that these unfavourable climatic conditions had serious and long-term consequences on forest ecosystems in Serbia.https://www.mdpi.com/2223-7747/11/10/1286defoliationforest declineextreme climate eventsdroughttree mortality |
spellingShingle | Goran Češljar Filip Jovanović Ljiljana Brašanac-Bosanac Ilija Đorđević Suzana Mitrović Saša Eremija Tatjana Ćirković-Mitrović Aleksandar Lučić Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia Plants defoliation forest decline extreme climate events drought tree mortality |
title | Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia |
title_full | Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia |
title_fullStr | Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia |
title_full_unstemmed | Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia |
title_short | Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia |
title_sort | impact of an extremely dry period on tree defoliation and tree mortality in serbia |
topic | defoliation forest decline extreme climate events drought tree mortality |
url | https://www.mdpi.com/2223-7747/11/10/1286 |
work_keys_str_mv | AT gorancesljar impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT filipjovanovic impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT ljiljanabrasanacbosanac impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT ilijađorđevic impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT suzanamitrovic impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT sasaeremija impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT tatjanacirkovicmitrovic impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia AT aleksandarlucic impactofanextremelydryperiodontreedefoliationandtreemortalityinserbia |