Summary: | A DC microgrid (DC-MG) is a novel power system that uses DC distribution in order to provide high quality power. The study system is made by a photovoltaic array (PV), a wind generator (WG), a fuel cell (FC), and an energy storage system (ESS) to establish a small type DC microgrid, with the bus being established by DC/DC converters with fuzzy controllers. An overall power dispatch was designed for the proposed system to distribute the power flows among the different energy sources and the storage unit in the system in order to satisfy the load requirements throughout an entire 24-h period. The structure of a power supervisor based on an optimal power dispatch algorithm is here proposed. Optimization was performed using dynamic programming (DP). In this paper, a system configuration of a DC microgrid is analyzed in different scenarios to show the efficacy of the control for all devices for the variable weather conditions with different DC loads. Thus, the voltage level and the power flow of the system are shown for different load conditions.
|