Formation energy prediction of crystalline compounds using deep convolutional network learning on voxel image representation

Abstract Emerging machine-learned models have enabled efficient and accurate prediction of compound formation energy, with the most prevalent models relying on graph structures for representing crystalline materials. Here, we introduce an alternative approach based on sparse voxel images of crystals...

Full description

Bibliographic Details
Main Authors: Ali Davariashtiyani, Sara Kadkhodaei
Format: Article
Language:English
Published: Nature Portfolio 2023-12-01
Series:Communications Materials
Online Access:https://doi.org/10.1038/s43246-023-00433-9
Description
Summary:Abstract Emerging machine-learned models have enabled efficient and accurate prediction of compound formation energy, with the most prevalent models relying on graph structures for representing crystalline materials. Here, we introduce an alternative approach based on sparse voxel images of crystals. By developing a sophisticated network architecture, we showcase the ability to learn the underlying features of structural and chemical arrangements in inorganic compounds from visual image representations, subsequently correlating these features with the compounds’ formation energy. Our model achieves accurate formation energy prediction by utilizing skip connections in a deep convolutional network and incorporating augmentation of rotated crystal samples during training, performing on par with state-of-the-art methods. By adopting visual images as an alternative representation for crystal compounds and harnessing the capabilities of deep convolutional networks, this study extends the frontier of machine learning for accelerated materials discovery and optimization. In a comprehensive evaluation, we analyse the predicted convex hulls for 3115 binary systems and introduce error metrics beyond formation energy error. This evaluation offers valuable insights into the impact of formation energy error on the performance of the predicted convex hulls.
ISSN:2662-4443