Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies

Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models...

Full description

Bibliographic Details
Main Authors: Martina M. Sanchez, Thamidul Islam Tonmoy, B. Hyle Park, Joshua T. Morgan
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/12/12/1828
Description
Summary:Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an “adipose-vascular” HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm<sup>2</sup> 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
ISSN:2218-273X