A Parameter-Free Cleaning Method for SMOTE in Imbalanced Classification
Oversampling is an efficient technique in dealing with class-imbalance problem. It addresses the problem by reduplicating or generating the minority class samples to balance the distribution between the samples of the majority and the minority class. Synthetic minority oversampling technique (SMOTE)...
Main Authors: | Yuanting Yan, Ruiqing Liu, Zihan Ding, Xiuquan Du, Jie Chen, Yanping Zhang |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8642396/ |
Similar Items
-
DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets
by: Alexandre M. de Carvalho, et al.
Published: (2020-11-01) -
RN-SMOTE: Reduced Noise SMOTE based on DBSCAN for enhancing imbalanced data classification
by: Ahmed Arafa, et al.
Published: (2022-09-01) -
IRS-BAG-Integrated Radius-SMOTE Algorithm with Bagging Ensemble Learning Model for Imbalanced Data Set Classification
by: Lilis Yuningsih, et al.
Published: (2023-10-01) -
A-SMOTE: A New Preprocessing Approach for Highly Imbalanced Datasets by Improving SMOTE
by: Ahmed Saad Hussein, et al.
Published: (2019-11-01) -
Improved Oversampling Algorithm for Imbalanced Data Based on K-Nearest Neighbor and Interpolation Process Optimization
by: Yiheng Chen, et al.
Published: (2024-02-01)