Flexible Piezoresistive Sensors from Polydimethylsiloxane Films with Ridge-like Surface Structures

Developing flexible sensors and actuators is of paramount importance for wearable devices and systems. In this research, we developed a simple and facile technique to construct flexible piezoresistive sensors from polydimethylsiloxane films with ridge-like surface structures and laser-induced porous...

Full description

Bibliographic Details
Main Authors: Ming Liu, Xianchao Liu, Fuqian Yang
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/10/1940
Description
Summary:Developing flexible sensors and actuators is of paramount importance for wearable devices and systems. In this research, we developed a simple and facile technique to construct flexible piezoresistive sensors from polydimethylsiloxane films with ridge-like surface structures and laser-induced porous graphene. Using a replication strategy, we prepared the ridge-like surface structures from sandpapers. The piezoresistive sensors exhibit excellent sensitivity with a response time of less than 50 ms and long-term cyclic stability under mechanical loading. The smallest weight they can sense is ~96 mg. We demonstrated applications of the piezoresistive sensors in the sensing of bio-related activities, including muscle contraction, finger flexion, wrist flexion, elbow bending, knee bending, swallowing, respiration, sounds, and pulses.
ISSN:2072-666X