Novel approach toward the understanding of genetic diversity based on the two types of amino acid repeats in Erwinia amylovora

Abstract Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack...

Full description

Bibliographic Details
Main Authors: Hyeonheui Ham, Dong Suk Park
Format: Article
Language:English
Published: Nature Portfolio 2023-10-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-44558-w
Description
Summary:Abstract Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack of a trustworthy index and data covering the globally occurring E. amylovora strains; thus, their origin and distribution pattern remains ambiguous. Therefore, there is a growing need for robust approaches for obtaining this information via the comparison of the genomic structure of Amygdaloideae-infecting strains to understand their genetic diversity and distribution. Here, the whole-genome sequences of 245 E. amylovora strains available from the NCBI database were compared to identify intraspecific genes for use as an improved index for the simple classification of E. amylovora strains regarding their distribution. Finally, we discovered two kinds of strain-typing protein-encoding genes, i.e., the SAM-dependent methyltransferase and electron transport complex subunit RsxC. Interestingly, both of these proteins carried an amino acid repeat in these strains: SAM-dependent methyltransferase comprised a single-amino-acid repeat (asparagine), whereas RsxC carried a 40-amino-acid repeat, which was differentially distributed among the strains. These noteworthy findings and approaches may enable the exploration of the genetic diversity of E. amylovora from a global perspective.
ISSN:2045-2322