Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory

Turbulence can cause effects such as light intensity fluctuations and phase fluctuations when a laser is transmitted in the atmosphere, which has serious impacts on a number of optical engineering application effects and on climate improvement. Therefore, accurately obtaining real-time turbulence in...

Full description

Bibliographic Details
Main Authors: Jiandong Mao, Yingnan Zhang, Juan Li, Xin Gong, Hu Zhao, Zhimin Rao
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/3/477
_version_ 1797611936602390528
author Jiandong Mao
Yingnan Zhang
Juan Li
Xin Gong
Hu Zhao
Zhimin Rao
author_facet Jiandong Mao
Yingnan Zhang
Juan Li
Xin Gong
Hu Zhao
Zhimin Rao
author_sort Jiandong Mao
collection DOAJ
description Turbulence can cause effects such as light intensity fluctuations and phase fluctuations when a laser is transmitted in the atmosphere, which has serious impacts on a number of optical engineering application effects and on climate improvement. Therefore, accurately obtaining real-time turbulence intensity information using lidar-active remote sensing technology is of great significance. In this paper, based on residual turbulent scintillation theory, a Mie-scattering lidar method was developed to detect atmospheric turbulence intensity. By extracting light intensity fluctuation information from a Mie-scattering lidar return signal, the atmospheric refractive index structure constant, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, representing the atmospheric turbulence intensity, could be obtained. Specifically, the scintillation effect on the detection path was analyzed, and the probability density distribution of the light intensity of the Mie-scattering lidar return signal was studied. It was verified that the probability density of logarithmic light intensity basically follows a normal distribution under weak fluctuation conditions. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profile based on Kolmogorov turbulence theory was retrieved using a layered, iterative method through the scintillation index. The method for detecting Kolmogorov turbulence intensity was applied to the detection of the non-Kolmogorov turbulence intensity. Through detection using the scintillation index, the corresponding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>C</mi><mo stretchy="false">˜</mo></mover><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profile could be calculated. The detection of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>C</mi><mo stretchy="false">˜</mo></mover><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profiles were compared with the Hufnagel–Valley (HV) night model in the Yinchuan area. The results show that the detection results are consistent with the overall change trend of the model. In general, it is feasible to detect a non-Kolmogorov turbulence profile using Mie-scattering lidar.
first_indexed 2024-03-11T06:34:37Z
format Article
id doaj.art-1a8c31e0818e48c0998a07309a831222
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-11T06:34:37Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-1a8c31e0818e48c0998a07309a8312222023-11-17T10:56:44ZengMDPI AGEntropy1099-43002023-03-0125347710.3390/e25030477Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence TheoryJiandong Mao0Yingnan Zhang1Juan Li2Xin Gong3Hu Zhao4Zhimin Rao5School of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, ChinaSchool of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, ChinaSchool of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, ChinaSchool of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, ChinaSchool of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, ChinaSchool of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, ChinaTurbulence can cause effects such as light intensity fluctuations and phase fluctuations when a laser is transmitted in the atmosphere, which has serious impacts on a number of optical engineering application effects and on climate improvement. Therefore, accurately obtaining real-time turbulence intensity information using lidar-active remote sensing technology is of great significance. In this paper, based on residual turbulent scintillation theory, a Mie-scattering lidar method was developed to detect atmospheric turbulence intensity. By extracting light intensity fluctuation information from a Mie-scattering lidar return signal, the atmospheric refractive index structure constant, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, representing the atmospheric turbulence intensity, could be obtained. Specifically, the scintillation effect on the detection path was analyzed, and the probability density distribution of the light intensity of the Mie-scattering lidar return signal was studied. It was verified that the probability density of logarithmic light intensity basically follows a normal distribution under weak fluctuation conditions. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profile based on Kolmogorov turbulence theory was retrieved using a layered, iterative method through the scintillation index. The method for detecting Kolmogorov turbulence intensity was applied to the detection of the non-Kolmogorov turbulence intensity. Through detection using the scintillation index, the corresponding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>C</mi><mo stretchy="false">˜</mo></mover><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profile could be calculated. The detection of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>C</mi><mo stretchy="false">˜</mo></mover><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> profiles were compared with the Hufnagel–Valley (HV) night model in the Yinchuan area. The results show that the detection results are consistent with the overall change trend of the model. In general, it is feasible to detect a non-Kolmogorov turbulence profile using Mie-scattering lidar.https://www.mdpi.com/1099-4300/25/3/477non-Kolmogorov turbulenceMie-scattering lidarrefractive index structure constantprobability density distributionresidual turbulent scintillation theory
spellingShingle Jiandong Mao
Yingnan Zhang
Juan Li
Xin Gong
Hu Zhao
Zhimin Rao
Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory
Entropy
non-Kolmogorov turbulence
Mie-scattering lidar
refractive index structure constant
probability density distribution
residual turbulent scintillation theory
title Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory
title_full Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory
title_fullStr Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory
title_full_unstemmed Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory
title_short Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory
title_sort novel detection of atmospheric turbulence profile using mie scattering lidar based on non kolmogorov turbulence theory
topic non-Kolmogorov turbulence
Mie-scattering lidar
refractive index structure constant
probability density distribution
residual turbulent scintillation theory
url https://www.mdpi.com/1099-4300/25/3/477
work_keys_str_mv AT jiandongmao noveldetectionofatmosphericturbulenceprofileusingmiescatteringlidarbasedonnonkolmogorovturbulencetheory
AT yingnanzhang noveldetectionofatmosphericturbulenceprofileusingmiescatteringlidarbasedonnonkolmogorovturbulencetheory
AT juanli noveldetectionofatmosphericturbulenceprofileusingmiescatteringlidarbasedonnonkolmogorovturbulencetheory
AT xingong noveldetectionofatmosphericturbulenceprofileusingmiescatteringlidarbasedonnonkolmogorovturbulencetheory
AT huzhao noveldetectionofatmosphericturbulenceprofileusingmiescatteringlidarbasedonnonkolmogorovturbulencetheory
AT zhiminrao noveldetectionofatmosphericturbulenceprofileusingmiescatteringlidarbasedonnonkolmogorovturbulencetheory