Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
In this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind.
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/4/335 |
_version_ | 1818952108009848832 |
---|---|
author | Noel Lacpao Roberto Corcino Mary Ann Ritzell Vega |
author_facet | Noel Lacpao Roberto Corcino Mary Ann Ritzell Vega |
author_sort | Noel Lacpao |
collection | DOAJ |
description | In this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind. |
first_indexed | 2024-12-20T09:45:08Z |
format | Article |
id | doaj.art-1a947137911c4b95a2d870a8580a90d1 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-12-20T09:45:08Z |
publishDate | 2019-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-1a947137911c4b95a2d870a8580a90d12022-12-21T19:44:45ZengMDPI AGMathematics2227-73902019-04-017433510.3390/math7040335math7040335Hurwitz-Lerch Type Multi-Poly-Cauchy NumbersNoel Lacpao0Roberto Corcino1Mary Ann Ritzell Vega2Department of Mathematics, College of Arts and Sciences, Bukidnon State University, Malaybalay City 8700, PhilippinesResearch Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City 6000, PhilippinesDepartment of Mathematics and Statistics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, PhilippinesIn this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind.https://www.mdpi.com/2227-7390/7/4/335multiple polylogarithm functionspoly-Cauchy numbers of the first and second kindHurwitz–Lerch factorial zeta functiongenerating function |
spellingShingle | Noel Lacpao Roberto Corcino Mary Ann Ritzell Vega Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers Mathematics multiple polylogarithm functions poly-Cauchy numbers of the first and second kind Hurwitz–Lerch factorial zeta function generating function |
title | Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers |
title_full | Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers |
title_fullStr | Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers |
title_full_unstemmed | Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers |
title_short | Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers |
title_sort | hurwitz lerch type multi poly cauchy numbers |
topic | multiple polylogarithm functions poly-Cauchy numbers of the first and second kind Hurwitz–Lerch factorial zeta function generating function |
url | https://www.mdpi.com/2227-7390/7/4/335 |
work_keys_str_mv | AT noellacpao hurwitzlerchtypemultipolycauchynumbers AT robertocorcino hurwitzlerchtypemultipolycauchynumbers AT maryannritzellvega hurwitzlerchtypemultipolycauchynumbers |