Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers

In this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind.

Bibliographic Details
Main Authors: Noel Lacpao, Roberto Corcino, Mary Ann Ritzell Vega
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/4/335
_version_ 1818952108009848832
author Noel Lacpao
Roberto Corcino
Mary Ann Ritzell Vega
author_facet Noel Lacpao
Roberto Corcino
Mary Ann Ritzell Vega
author_sort Noel Lacpao
collection DOAJ
description In this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind.
first_indexed 2024-12-20T09:45:08Z
format Article
id doaj.art-1a947137911c4b95a2d870a8580a90d1
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-20T09:45:08Z
publishDate 2019-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-1a947137911c4b95a2d870a8580a90d12022-12-21T19:44:45ZengMDPI AGMathematics2227-73902019-04-017433510.3390/math7040335math7040335Hurwitz-Lerch Type Multi-Poly-Cauchy NumbersNoel Lacpao0Roberto Corcino1Mary Ann Ritzell Vega2Department of Mathematics, College of Arts and Sciences, Bukidnon State University, Malaybalay City 8700, PhilippinesResearch Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City 6000, PhilippinesDepartment of Mathematics and Statistics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, PhilippinesIn this paper, we define Hurwitz–Lerch multi-poly-Cauchy numbers using the multiple polylogarithm factorial function. Furthermore, we establish properties of these types of numbers and obtain two different forms of the explicit formula using Stirling numbers of the first kind.https://www.mdpi.com/2227-7390/7/4/335multiple polylogarithm functionspoly-Cauchy numbers of the first and second kindHurwitz–Lerch factorial zeta functiongenerating function
spellingShingle Noel Lacpao
Roberto Corcino
Mary Ann Ritzell Vega
Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
Mathematics
multiple polylogarithm functions
poly-Cauchy numbers of the first and second kind
Hurwitz–Lerch factorial zeta function
generating function
title Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
title_full Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
title_fullStr Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
title_full_unstemmed Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
title_short Hurwitz-Lerch Type Multi-Poly-Cauchy Numbers
title_sort hurwitz lerch type multi poly cauchy numbers
topic multiple polylogarithm functions
poly-Cauchy numbers of the first and second kind
Hurwitz–Lerch factorial zeta function
generating function
url https://www.mdpi.com/2227-7390/7/4/335
work_keys_str_mv AT noellacpao hurwitzlerchtypemultipolycauchynumbers
AT robertocorcino hurwitzlerchtypemultipolycauchynumbers
AT maryannritzellvega hurwitzlerchtypemultipolycauchynumbers