Online Trajectory Optimization Method for Large Attitude Flip Vertical Landing of the Starship-like Vehicle

A high-precision online trajectory optimization method combining convex optimization and Radau pseudospectral method is presented for the large attitude flip vertical landing problem of a starship-like vehicle. During the landing process, the aerodynamic influence on the starship-like vehicle is sig...

Full description

Bibliographic Details
Main Authors: Hongbo Chen, Zhenwei Ma, Jinbo Wang, Linfeng Su
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/2/288
Description
Summary:A high-precision online trajectory optimization method combining convex optimization and Radau pseudospectral method is presented for the large attitude flip vertical landing problem of a starship-like vehicle. During the landing process, the aerodynamic influence on the starship-like vehicle is significant and non-negligible. A planar landing dynamics model with pitching motion is developed considering that there is no extensive lateral motion modulation during the whole flight. Combining the constraints of its powered descent landing process, a model of the fuel optimal trajectory optimization problem in the landing point coordinate system is given. The nonconvex properties of the trajectory optimization problem model are analyzed and discussed, and the advantages of fast solution and convergence certainty of convex optimization, and high discretization precision of the pseudospectral method, are fully utilized to transform the strongly nonconvex optimization problem into a series of finite-dimensional convex subproblems, which are solved quickly by the interior point method solver. Hardware-in-the-loop simulation experiments verify the effectiveness of the online trajectory optimization method. This method has the potential to be an online guidance method for the powered descent landing problem of starship-like vehicles.
ISSN:2227-7390