Suspect screening and nontargeted analysis of per- and polyfluoroalkyl substances in representative fluorocarbon surfactants, aqueous film-forming foams, and impacted water in China

Massive usage of aqueous film-forming foams (AFFF) containing fluorocarbon surfactants (FS) is one of the major sources of per- and polyfluoroalkyl substances (PFAS) contamination, which poses negative environmental and health effects. However, there is a critical knowledge gap regarding PFAS chemic...

Full description

Bibliographic Details
Main Authors: Liquan Liu, Meiling Lu, Xue Cheng, Gang Yu, Jun Huang
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:Environment International
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0160412022003257
Description
Summary:Massive usage of aqueous film-forming foams (AFFF) containing fluorocarbon surfactants (FS) is one of the major sources of per- and polyfluoroalkyl substances (PFAS) contamination, which poses negative environmental and health effects. However, there is a critical knowledge gap regarding PFAS chemical compositions in high consumption FS products which were used in AFFFs on the Chinese market and in water impacted by such products. This study firstly applied a comprehensive suspect screening and nontargeted analysis (NTA) workflow to investigate the main ionic and neutral PFAS in FS products from the largest Chinese vendor and compared with two international brands to unveil the PFAS used in AFFF. Overall, 24 classes of PFAS, including 69 compounds, were tentatively identified in FS products, and high concentrations of neutral PFAS were found in polymer-based products, indicating potential environmental risk. In addition, we applied a simplified data mining process to capture 36 PFAS from the impacted water, and the relationship among FS, AFFF concentrates and impacted water was explored. This study parsed the PFAS characteristics in AFFF-related industrial products and impacted water in China, which is instrumental for managing and controlling prioritized PFAS in this field.
ISSN:0160-4120