Determining factors for compensatory movements of the left arm and shoulder in violin playing
IntroductionDespite a large number of available ergonomic aids and recommendations regarding instrument positioning, violin players at any proficiency level still display a worrying incidence of task-specific complaints of incompletely understood etiology. Compensatory movement patterns of the left...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-01-01
|
Series: | Frontiers in Psychology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1017039/full |
_version_ | 1828056150715662336 |
---|---|
author | Oliver Margulies Matthias Nübling William Verheul Wulf Hildebrandt Horst Hildebrandt Horst Hildebrandt |
author_facet | Oliver Margulies Matthias Nübling William Verheul Wulf Hildebrandt Horst Hildebrandt Horst Hildebrandt |
author_sort | Oliver Margulies |
collection | DOAJ |
description | IntroductionDespite a large number of available ergonomic aids and recommendations regarding instrument positioning, violin players at any proficiency level still display a worrying incidence of task-specific complaints of incompletely understood etiology. Compensatory movement patterns of the left upper extremity form an integral part of violin playing. They are highly variable between players but remain understudied despite their relevance for task-specific health problems.MethodsThis study investigated individual position effects of the instrument and pre-existing biomechanical factors likely determining the degree of typical compensatory movements in the left upper extremity: (1) left elbow/upper arm adduction (“Reference Angle α”, deviation from the vertical axis), (2) shoulder elevation (“Coord x”, in mm), and (3) shoulder protraction (“Coord y”, in mm). In a group of healthy music students (N = 30, 15 m, 15 f, mean age = 22.5, SD = 2.6), “Reference Angle α” was measured by 3D motion capture analysis. “Coord x” and “Coord y” were assessed and ranked by a synchronized 2D HD video monitoring while performing a pre-defined 16-s tune under laboratory conditions. These three primary outcome variables were compared between four typical, standardized violin positions varying by their sideward orientation (“LatAx-CSP”) and/or inclination (“LoAx-HP”) by 30°, as well as the players’ usual playing position. Selected biomechanical hand parameter data were analyzed as co-factors according to Wagner’s Biomechanical Hand Measurement (BHM).ResultsMean “Reference Angle α” decreased significantly from 24.84 ± 2.67 to 18.61 ± 3.12° (p < 0.001), “Coord x” from 22.54 ± 7.417 to 4.75 ± 3.488 mm (p < 0.001), and “Coord y” from 5.66 ± 3.287 to 1.94 ± 1.901) mm (p < 0.001) when increasing LatAx-CSP and LoAx-HP by 30°. Concerning the biomechanical co-factors, “Reference Angle α”, “Coord y”, but not “Coord x”, were found to be significantly increased overall, with decreasing passive supination range (r = −0.307, p = <0.001 for “Passive Supination 250 g/16Ncm”, and r = −0.194, p = <0.001 for “Coord y”). Compensatory movements were larger during tune sections requiring high positioning of the left hand and when using the small finger.DiscussionResults may enable to adapt individually suitable instrument positions to minimize strenuous and potentially unhealthy compensation movements of the left upper extremity. |
first_indexed | 2024-04-10T20:49:55Z |
format | Article |
id | doaj.art-1aafa891449d4140ab42ae16631e57a4 |
institution | Directory Open Access Journal |
issn | 1664-1078 |
language | English |
last_indexed | 2024-04-10T20:49:55Z |
publishDate | 2023-01-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Psychology |
spelling | doaj.art-1aafa891449d4140ab42ae16631e57a42023-01-23T13:44:50ZengFrontiers Media S.A.Frontiers in Psychology1664-10782023-01-011310.3389/fpsyg.2022.10170391017039Determining factors for compensatory movements of the left arm and shoulder in violin playingOliver Margulies0Matthias Nübling1William Verheul2Wulf Hildebrandt3Horst Hildebrandt4Horst Hildebrandt5Music Physiology/Musicians’ and Preventive Medicine Section, Department of Music, Institute for Music Research (IMR), Zurich University of the Arts (ZHdK), Zürich, SwitzerlandMusic Physiology/Musicians’ and Preventive Medicine Section, Department of Music, Institute for Music Research (IMR), Zurich University of the Arts (ZHdK), Zürich, SwitzerlandMusic Physiology/Musicians’ and Preventive Medicine Section, Department of Music, Institute for Music Research (IMR), Zurich University of the Arts (ZHdK), Zürich, SwitzerlandInstitute for Anatomy and Cell Biology, University of Marburg, Marburg, GermanyMusic Physiology/Musicians’ and Preventive Medicine Section, Department of Music, Institute for Music Research (IMR), Zurich University of the Arts (ZHdK), Zürich, SwitzerlandSwiss University Center for Music Physiology, Basel University of the Arts, Basel, SwitzerlandIntroductionDespite a large number of available ergonomic aids and recommendations regarding instrument positioning, violin players at any proficiency level still display a worrying incidence of task-specific complaints of incompletely understood etiology. Compensatory movement patterns of the left upper extremity form an integral part of violin playing. They are highly variable between players but remain understudied despite their relevance for task-specific health problems.MethodsThis study investigated individual position effects of the instrument and pre-existing biomechanical factors likely determining the degree of typical compensatory movements in the left upper extremity: (1) left elbow/upper arm adduction (“Reference Angle α”, deviation from the vertical axis), (2) shoulder elevation (“Coord x”, in mm), and (3) shoulder protraction (“Coord y”, in mm). In a group of healthy music students (N = 30, 15 m, 15 f, mean age = 22.5, SD = 2.6), “Reference Angle α” was measured by 3D motion capture analysis. “Coord x” and “Coord y” were assessed and ranked by a synchronized 2D HD video monitoring while performing a pre-defined 16-s tune under laboratory conditions. These three primary outcome variables were compared between four typical, standardized violin positions varying by their sideward orientation (“LatAx-CSP”) and/or inclination (“LoAx-HP”) by 30°, as well as the players’ usual playing position. Selected biomechanical hand parameter data were analyzed as co-factors according to Wagner’s Biomechanical Hand Measurement (BHM).ResultsMean “Reference Angle α” decreased significantly from 24.84 ± 2.67 to 18.61 ± 3.12° (p < 0.001), “Coord x” from 22.54 ± 7.417 to 4.75 ± 3.488 mm (p < 0.001), and “Coord y” from 5.66 ± 3.287 to 1.94 ± 1.901) mm (p < 0.001) when increasing LatAx-CSP and LoAx-HP by 30°. Concerning the biomechanical co-factors, “Reference Angle α”, “Coord y”, but not “Coord x”, were found to be significantly increased overall, with decreasing passive supination range (r = −0.307, p = <0.001 for “Passive Supination 250 g/16Ncm”, and r = −0.194, p = <0.001 for “Coord y”). Compensatory movements were larger during tune sections requiring high positioning of the left hand and when using the small finger.DiscussionResults may enable to adapt individually suitable instrument positions to minimize strenuous and potentially unhealthy compensation movements of the left upper extremity.https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1017039/fullviolin ergonomics3D motion capture2D video analysisbiomechanicsmusic physiologymusicians’ medicine |
spellingShingle | Oliver Margulies Matthias Nübling William Verheul Wulf Hildebrandt Horst Hildebrandt Horst Hildebrandt Determining factors for compensatory movements of the left arm and shoulder in violin playing Frontiers in Psychology violin ergonomics 3D motion capture 2D video analysis biomechanics music physiology musicians’ medicine |
title | Determining factors for compensatory movements of the left arm and shoulder in violin playing |
title_full | Determining factors for compensatory movements of the left arm and shoulder in violin playing |
title_fullStr | Determining factors for compensatory movements of the left arm and shoulder in violin playing |
title_full_unstemmed | Determining factors for compensatory movements of the left arm and shoulder in violin playing |
title_short | Determining factors for compensatory movements of the left arm and shoulder in violin playing |
title_sort | determining factors for compensatory movements of the left arm and shoulder in violin playing |
topic | violin ergonomics 3D motion capture 2D video analysis biomechanics music physiology musicians’ medicine |
url | https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1017039/full |
work_keys_str_mv | AT olivermargulies determiningfactorsforcompensatorymovementsoftheleftarmandshoulderinviolinplaying AT matthiasnubling determiningfactorsforcompensatorymovementsoftheleftarmandshoulderinviolinplaying AT williamverheul determiningfactorsforcompensatorymovementsoftheleftarmandshoulderinviolinplaying AT wulfhildebrandt determiningfactorsforcompensatorymovementsoftheleftarmandshoulderinviolinplaying AT horsthildebrandt determiningfactorsforcompensatorymovementsoftheleftarmandshoulderinviolinplaying AT horsthildebrandt determiningfactorsforcompensatorymovementsoftheleftarmandshoulderinviolinplaying |