Coherent coupling of single molecules to on-chip ring resonators

We report on cryogenic coupling of organic molecules to ring microresonators obtained by looping subwavelength waveguides (nanoguides). We discuss fabrication and characterization of the chip-based nanophotonic elements which yield a resonator finesse in the order of 20 when covered by molecular cry...

Full description

Bibliographic Details
Main Authors: Dominik Rattenbacher, Alexey Shkarin, Jan Renger, Tobias Utikal, Stephan Götzinger, Vahid Sandoghdar
Format: Article
Language:English
Published: IOP Publishing 2019-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab28b2
Description
Summary:We report on cryogenic coupling of organic molecules to ring microresonators obtained by looping subwavelength waveguides (nanoguides). We discuss fabrication and characterization of the chip-based nanophotonic elements which yield a resonator finesse in the order of 20 when covered by molecular crystals. Our observed extinction dips from single molecules reach 22%, consistent with an expected enhancement factor of up to 11 for the molecular emission into the nanoguide. Future efforts will aim at efficient coupling of a handful of molecules via their interaction with a ring microresonator mode, setting the ground for the realization of quantum optical cooperative effects.
ISSN:1367-2630