Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres

Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents ( S ± ε ) : Δ 2 u − c n Δ u + d n u = K u n + 4 n − 4 ± ε $(S_{\pm \varepsilon}): \Delta ^{2}u-c_{n}\Delta u+d_{n}u = Ku^{ \frac{n+4}{n-4}\pm \varepsilon}$ , u > 0 $u>0$ on S...

Full description

Bibliographic Details
Main Author: Kamal Ould Bouh
Format: Article
Language:English
Published: SpringerOpen 2023-10-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-023-01789-0
_version_ 1797452015835545600
author Kamal Ould Bouh
author_facet Kamal Ould Bouh
author_sort Kamal Ould Bouh
collection DOAJ
description Abstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents ( S ± ε ) : Δ 2 u − c n Δ u + d n u = K u n + 4 n − 4 ± ε $(S_{\pm \varepsilon}): \Delta ^{2}u-c_{n}\Delta u+d_{n}u = Ku^{ \frac{n+4}{n-4}\pm \varepsilon}$ , u > 0 $u>0$ on S n $S^{n}$ , where n ≥ 5 $n\geq 5$ , ε is a small positive parameter and K is a smooth positive function on S n $S^{n}$ . We construct some solutions of ( S − ε ) $(S_{-\varepsilon})$ that blow up at one critical point of K. However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation ( S + ε ) $(S_{+\varepsilon})$ .
first_indexed 2024-03-09T15:01:43Z
format Article
id doaj.art-1ac4beb63903408ea13b1f9554ae31c8
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-03-09T15:01:43Z
publishDate 2023-10-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-1ac4beb63903408ea13b1f9554ae31c82023-11-26T13:50:59ZengSpringerOpenBoundary Value Problems1687-27702023-10-012023111410.1186/s13661-023-01789-0Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheresKamal Ould Bouh0Institut Supérieur de Comptabilité et d’Administration d’Entreprises, ISCAEAbstract This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents ( S ± ε ) : Δ 2 u − c n Δ u + d n u = K u n + 4 n − 4 ± ε $(S_{\pm \varepsilon}): \Delta ^{2}u-c_{n}\Delta u+d_{n}u = Ku^{ \frac{n+4}{n-4}\pm \varepsilon}$ , u > 0 $u>0$ on S n $S^{n}$ , where n ≥ 5 $n\geq 5$ , ε is a small positive parameter and K is a smooth positive function on S n $S^{n}$ . We construct some solutions of ( S − ε ) $(S_{-\varepsilon})$ that blow up at one critical point of K. However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation ( S + ε ) $(S_{+\varepsilon})$ .https://doi.org/10.1186/s13661-023-01789-0Critical pointsCritical exponentVariational problemPaneitz curvature
spellingShingle Kamal Ould Bouh
Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
Boundary Value Problems
Critical points
Critical exponent
Variational problem
Paneitz curvature
title Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
title_full Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
title_fullStr Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
title_full_unstemmed Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
title_short Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres
title_sort existence and nonexistence of solutions for an approximation of the paneitz problem on spheres
topic Critical points
Critical exponent
Variational problem
Paneitz curvature
url https://doi.org/10.1186/s13661-023-01789-0
work_keys_str_mv AT kamalouldbouh existenceandnonexistenceofsolutionsforanapproximationofthepaneitzproblemonspheres