A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications

“Linearly many faults” is a phenomenon observed by Cheng and Lipták in which a specific structure emerges when a graph is disconnected and often occurs in various interconnection networks. This phenomenon means that if a certain number of vertices or edges are deleted from a graph, the remaining par...

ver descrição completa

Detalhes bibliográficos
Principais autores: Mei-Mei Gu, Hong-Xia Yan, Jou-Ming Chang
Formato: Artigo
Idioma:English
Publicado em: MDPI AG 2024-01-01
coleção:Mathematics
Assuntos:
Acesso em linha:https://www.mdpi.com/2227-7390/12/2/268
_version_ 1827371547684241408
author Mei-Mei Gu
Hong-Xia Yan
Jou-Ming Chang
author_facet Mei-Mei Gu
Hong-Xia Yan
Jou-Ming Chang
author_sort Mei-Mei Gu
collection DOAJ
description “Linearly many faults” is a phenomenon observed by Cheng and Lipták in which a specific structure emerges when a graph is disconnected and often occurs in various interconnection networks. This phenomenon means that if a certain number of vertices or edges are deleted from a graph, the remaining part either stays connected or breaks into one large component along with smaller components with just a few vertices. This phenomenon can be observed in many types of graphs and has important implications for network analysis and optimization. In this paper, we first validate the phenomenon of linearly many faults for surviving graph of a burnt pancake graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> when removing any edge subset with a size of approximately six times <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>. For graph <i>G</i>, the <i>ℓ</i>-component edge connectivity denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>ℓ</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (resp., the <i>ℓ</i>-extra edge connectivity denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>λ</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) is the cardinality of a minimum edge subset <i>S</i> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></semantics></math></inline-formula> is disconnected and has at least <i>ℓ</i> components (resp., each component of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></semantics></math></inline-formula> has at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> vertices). Both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>ℓ</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and e<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>λ</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are essential metrics for network reliability assessment. Specifically, from the property of “linearly many faults”, we may further prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>5</mn></msub><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>λ</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>=</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>⩾</mo><mn>5</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>6</mn></msub><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>λ</mi><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>+</mo><mn>4</mn><mo>=</mo><mn>5</mn><mi>n</mi><mo>−</mo><mn>4</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>7</mn></msub><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>λ</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>+</mo><mn>5</mn><mo>=</mo><mn>6</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>⩾</mo><mn>6</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-08T10:42:01Z
format Article
id doaj.art-1acf55d22a9b46f4bcd6fe028e67406e
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T10:42:01Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-1acf55d22a9b46f4bcd6fe028e67406e2024-01-26T17:32:36ZengMDPI AGMathematics2227-73902024-01-0112226810.3390/math12020268A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its ApplicationsMei-Mei Gu0Hong-Xia Yan1Jou-Ming Chang2Department of Science and Technology, China University of Political Science and Law, Beijing 102249, ChinaDepartment of Science and Technology, China University of Political Science and Law, Beijing 102249, ChinaInstitute of Information and Decision Sciences, National Taipei University of Business, Taipei 10051, Taiwan“Linearly many faults” is a phenomenon observed by Cheng and Lipták in which a specific structure emerges when a graph is disconnected and often occurs in various interconnection networks. This phenomenon means that if a certain number of vertices or edges are deleted from a graph, the remaining part either stays connected or breaks into one large component along with smaller components with just a few vertices. This phenomenon can be observed in many types of graphs and has important implications for network analysis and optimization. In this paper, we first validate the phenomenon of linearly many faults for surviving graph of a burnt pancake graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> when removing any edge subset with a size of approximately six times <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>. For graph <i>G</i>, the <i>ℓ</i>-component edge connectivity denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>ℓ</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (resp., the <i>ℓ</i>-extra edge connectivity denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>λ</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) is the cardinality of a minimum edge subset <i>S</i> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></semantics></math></inline-formula> is disconnected and has at least <i>ℓ</i> components (resp., each component of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></semantics></math></inline-formula> has at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> vertices). Both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>ℓ</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and e<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>λ</mi><mrow><mo>(</mo><mi>ℓ</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are essential metrics for network reliability assessment. Specifically, from the property of “linearly many faults”, we may further prove that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>5</mn></msub><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>λ</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>=</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>⩾</mo><mn>5</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>6</mn></msub><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>λ</mi><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>+</mo><mn>4</mn><mo>=</mo><mn>5</mn><mi>n</mi><mo>−</mo><mn>4</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mn>7</mn></msub><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>=</mo><msup><mi>λ</mi><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>B</mi><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>+</mo><mn>5</mn><mo>=</mo><mn>6</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>⩾</mo><mn>6</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/12/2/268burnt pancake graphcomponent edge connectivityextra edge connectivitylinearly many faultsconditional connectivity
spellingShingle Mei-Mei Gu
Hong-Xia Yan
Jou-Ming Chang
A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications
Mathematics
burnt pancake graph
component edge connectivity
extra edge connectivity
linearly many faults
conditional connectivity
title A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications
title_full A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications
title_fullStr A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications
title_full_unstemmed A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications
title_short A Validation of the Phenomenon of Linearly Many Faults on Burnt Pancake Graphs with Its Applications
title_sort validation of the phenomenon of linearly many faults on burnt pancake graphs with its applications
topic burnt pancake graph
component edge connectivity
extra edge connectivity
linearly many faults
conditional connectivity
url https://www.mdpi.com/2227-7390/12/2/268
work_keys_str_mv AT meimeigu avalidationofthephenomenonoflinearlymanyfaultsonburntpancakegraphswithitsapplications
AT hongxiayan avalidationofthephenomenonoflinearlymanyfaultsonburntpancakegraphswithitsapplications
AT joumingchang avalidationofthephenomenonoflinearlymanyfaultsonburntpancakegraphswithitsapplications
AT meimeigu validationofthephenomenonoflinearlymanyfaultsonburntpancakegraphswithitsapplications
AT hongxiayan validationofthephenomenonoflinearlymanyfaultsonburntpancakegraphswithitsapplications
AT joumingchang validationofthephenomenonoflinearlymanyfaultsonburntpancakegraphswithitsapplications