Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function

This paper considers the computation of approximations of matrix functionals of form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mi>A</...

Full description

Bibliographic Details
Main Authors: Jihan Alahmadi, Miroslav Pranić, Lothar Reichel
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/2/105
_version_ 1797622395619508224
author Jihan Alahmadi
Miroslav Pranić
Lothar Reichel
author_facet Jihan Alahmadi
Miroslav Pranić
Lothar Reichel
author_sort Jihan Alahmadi
collection DOAJ
description This paper considers the computation of approximations of matrix functionals of form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><msup><mrow><mi mathvariant="bold-italic">v</mi></mrow><mi>T</mi></msup><mi>f</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi mathvariant="bold-italic">v</mi></mrow></semantics></math></inline-formula>, where <i>A</i> is a large symmetric positive definite matrix, <i>v</i> is a vector, and <i>f</i> is a Stieltjes function. The functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> is approximated by a rational Gauss quadrature rule with poles on the negative real axis (or part thereof) in the complex plane, and we focus on the allocation of the poles. Specifically, we propose that the poles, when considered positive point charges, be allocated to make the negative real axis (or part thereof) approximate an equipotential curve. This is easily achieved with the aid of conformal mapping.
first_indexed 2024-03-11T09:09:40Z
format Article
id doaj.art-1af4a33ffeef4b5b9e2199b7d4a07d51
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T09:09:40Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-1af4a33ffeef4b5b9e2199b7d4a07d512023-11-16T19:05:18ZengMDPI AGAxioms2075-16802023-01-0112210510.3390/axioms12020105Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes FunctionJihan Alahmadi0Miroslav Pranić1Lothar Reichel2Department of Mathematics, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi ArabiaDepartment of Mathematics and Informatics, Faculty of Science M. Stojanovića 2, University of Banja Luka, 51000 Banja Luka, Bosnia and HerzegovinaDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USAThis paper considers the computation of approximations of matrix functionals of form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><msup><mrow><mi mathvariant="bold-italic">v</mi></mrow><mi>T</mi></msup><mi>f</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi mathvariant="bold-italic">v</mi></mrow></semantics></math></inline-formula>, where <i>A</i> is a large symmetric positive definite matrix, <i>v</i> is a vector, and <i>f</i> is a Stieltjes function. The functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> is approximated by a rational Gauss quadrature rule with poles on the negative real axis (or part thereof) in the complex plane, and we focus on the allocation of the poles. Specifically, we propose that the poles, when considered positive point charges, be allocated to make the negative real axis (or part thereof) approximate an equipotential curve. This is easily achieved with the aid of conformal mapping.https://www.mdpi.com/2075-1680/12/2/105Stieltjes functionmatrix functionrational Gauss quadrature
spellingShingle Jihan Alahmadi
Miroslav Pranić
Lothar Reichel
Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function
Axioms
Stieltjes function
matrix function
rational Gauss quadrature
title Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function
title_full Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function
title_fullStr Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function
title_full_unstemmed Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function
title_short Pole Allocation for Rational Gauss Quadrature Rules for Matrix Functionals Defined by a Stieltjes Function
title_sort pole allocation for rational gauss quadrature rules for matrix functionals defined by a stieltjes function
topic Stieltjes function
matrix function
rational Gauss quadrature
url https://www.mdpi.com/2075-1680/12/2/105
work_keys_str_mv AT jihanalahmadi poleallocationforrationalgaussquadraturerulesformatrixfunctionalsdefinedbyastieltjesfunction
AT miroslavpranic poleallocationforrationalgaussquadraturerulesformatrixfunctionalsdefinedbyastieltjesfunction
AT lotharreichel poleallocationforrationalgaussquadraturerulesformatrixfunctionalsdefinedbyastieltjesfunction