Partition dimension of disjoint union of complete bipartite graphs

For any (not necessary connected) graph $G(V,E)$ and $A\subseteq V(G)$, the distance of a vertex $x\in V(G)$ and $A$ is $d(x,A)=\min\{d(x,a): a\in A\}$. A subset of vertices $A$ resolves two vertices $x,y \in V(G)$ if $d(x,A)\neq d(y,A)$. For an ordered partition $\Lambda=\{A_1, A_2,\ldots, A_k\}$ o...

Full description

Bibliographic Details
Main Authors: Debi Oktia Haryeni, Edy Tri Baskoro, Suhadi Wido Saputro
Format: Article
Language:Indonesian
Published: Universitas Islam Negeri Raden Intan Lampung 2021-07-01
Series:Desimal
Subjects:
Online Access:http://ejournal.radenintan.ac.id/index.php/desimal/article/view/10190
_version_ 1818971137439170560
author Debi Oktia Haryeni
Edy Tri Baskoro
Suhadi Wido Saputro
author_facet Debi Oktia Haryeni
Edy Tri Baskoro
Suhadi Wido Saputro
author_sort Debi Oktia Haryeni
collection DOAJ
description For any (not necessary connected) graph $G(V,E)$ and $A\subseteq V(G)$, the distance of a vertex $x\in V(G)$ and $A$ is $d(x,A)=\min\{d(x,a): a\in A\}$. A subset of vertices $A$ resolves two vertices $x,y \in V(G)$ if $d(x,A)\neq d(y,A)$. For an ordered partition $\Lambda=\{A_1, A_2,\ldots, A_k\}$ of $V(G)$, if all $d(x,A_i)\infty$ for all $x\in V(G)$, then the representation of $x$ under $\Lambda$ is $r(x|\Lambda)=(d(x,A_1), d(x,A_2), \ldots, d(x,A_k))$. Such a partition $\Lambda$ is a resolving partition of $G$ if every two distinct vertices $x,y\in V(G)$ are resolved by $A_i$ for some $i\in [1,k]$. The smallest cardinality of a resolving partition $\Lambda$ is called a partition dimension of $G$ and denoted by $pd(G)$ or $pdd(G)$ for connected or disconnected $G$, respectively. If $G$ have no resolving partition, then $pdd(G)=\infty$. In this paper, we studied the partition dimension of disjoint union of complete bipartite graph, namely $tK_{m,n}$ where $t\geq 1$ and $m\geq n\geq 2$. We gave the necessary condition such that the partition dimension of $tK_{m,n}$ are finite. Furthermore, we also derived the necessary and sufficient conditions such that $pdd(tK_{m,n})$ is either equal to $m$ or $m+1$.
first_indexed 2024-12-20T14:47:36Z
format Article
id doaj.art-1b006b610b3a40d0b94ee6ca936fcae9
institution Directory Open Access Journal
issn 2613-9073
2613-9081
language Indonesian
last_indexed 2024-12-20T14:47:36Z
publishDate 2021-07-01
publisher Universitas Islam Negeri Raden Intan Lampung
record_format Article
series Desimal
spelling doaj.art-1b006b610b3a40d0b94ee6ca936fcae92022-12-21T19:37:04ZindUniversitas Islam Negeri Raden Intan LampungDesimal2613-90732613-90812021-07-014222523010.24042/djm.v4i2.101904161Partition dimension of disjoint union of complete bipartite graphsDebi Oktia Haryeni0Edy Tri Baskoro1Suhadi Wido Saputro2The Republic of Indonesia Defense UniversityInstitut Teknologi BandungInstitut Teknologi BandungFor any (not necessary connected) graph $G(V,E)$ and $A\subseteq V(G)$, the distance of a vertex $x\in V(G)$ and $A$ is $d(x,A)=\min\{d(x,a): a\in A\}$. A subset of vertices $A$ resolves two vertices $x,y \in V(G)$ if $d(x,A)\neq d(y,A)$. For an ordered partition $\Lambda=\{A_1, A_2,\ldots, A_k\}$ of $V(G)$, if all $d(x,A_i)\infty$ for all $x\in V(G)$, then the representation of $x$ under $\Lambda$ is $r(x|\Lambda)=(d(x,A_1), d(x,A_2), \ldots, d(x,A_k))$. Such a partition $\Lambda$ is a resolving partition of $G$ if every two distinct vertices $x,y\in V(G)$ are resolved by $A_i$ for some $i\in [1,k]$. The smallest cardinality of a resolving partition $\Lambda$ is called a partition dimension of $G$ and denoted by $pd(G)$ or $pdd(G)$ for connected or disconnected $G$, respectively. If $G$ have no resolving partition, then $pdd(G)=\infty$. In this paper, we studied the partition dimension of disjoint union of complete bipartite graph, namely $tK_{m,n}$ where $t\geq 1$ and $m\geq n\geq 2$. We gave the necessary condition such that the partition dimension of $tK_{m,n}$ are finite. Furthermore, we also derived the necessary and sufficient conditions such that $pdd(tK_{m,n})$ is either equal to $m$ or $m+1$.http://ejournal.radenintan.ac.id/index.php/desimal/article/view/10190resolvabilitymetric dimensionpartition dimensiondisconnected graphforestcomplete bipartite graph.
spellingShingle Debi Oktia Haryeni
Edy Tri Baskoro
Suhadi Wido Saputro
Partition dimension of disjoint union of complete bipartite graphs
Desimal
resolvability
metric dimension
partition dimension
disconnected graph
forest
complete bipartite graph.
title Partition dimension of disjoint union of complete bipartite graphs
title_full Partition dimension of disjoint union of complete bipartite graphs
title_fullStr Partition dimension of disjoint union of complete bipartite graphs
title_full_unstemmed Partition dimension of disjoint union of complete bipartite graphs
title_short Partition dimension of disjoint union of complete bipartite graphs
title_sort partition dimension of disjoint union of complete bipartite graphs
topic resolvability
metric dimension
partition dimension
disconnected graph
forest
complete bipartite graph.
url http://ejournal.radenintan.ac.id/index.php/desimal/article/view/10190
work_keys_str_mv AT debioktiaharyeni partitiondimensionofdisjointunionofcompletebipartitegraphs
AT edytribaskoro partitiondimensionofdisjointunionofcompletebipartitegraphs
AT suhadiwidosaputro partitiondimensionofdisjointunionofcompletebipartitegraphs