Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>

In highly anisotropic organic superconductor (TMTSF)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ClO<inline-formula><math display=&q...

Full description

Bibliographic Details
Main Authors: Kaushal K. Kesharpu, Vladislav D. Kochev, Pavel D. Grigoriev
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/1/72
_version_ 1797410605660897280
author Kaushal K. Kesharpu
Vladislav D. Kochev
Pavel D. Grigoriev
author_facet Kaushal K. Kesharpu
Vladislav D. Kochev
Pavel D. Grigoriev
author_sort Kaushal K. Kesharpu
collection DOAJ
description In highly anisotropic organic superconductor (TMTSF)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ClO<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, superconducting (SC) phase coexists with metallic and spin-density wave phases in the form of domains. Using the Maxwell-Garnett approximation (MGA), we calculate the volume ratio and estimate the shape of these embedded SC domains from resistivity data at various temperature and anion disorder, controlled by the cooling rate or annealing time of (TMTSF)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ClO<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> samples. We found that the variation of cooling rate and of annealing time affect differently the shape of SC domains. In all cases the SC domains have oblate shape, being the shortest along the interlayer <i>z</i>-axis. This contradicts the widely assumed filamentary superconductivity along the <i>z</i>-axis, used to explain the anisotropic superconductivity onset. We show that anisotropic resistivity drop at the SC onset can be described by the analytical MGA theory with anisotropic background resistance, while the anisotropic <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> can be explained by considering a finite size and flat shape of the samples. Due to a flat/needle sample shape, the probability of percolation via SC domains is the highest along the shortest sample dimension (<i>z</i>-axis), and the lowest along the sample length (<i>x</i>-axis). Our theory can be applied to other heterogeneous superconductors, where the size <i>d</i> of SC domains is much larger than the SC coherence length <inline-formula><math display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, e.g., cuprates, iron-based or organic superconductors. It is also applicable when the spin/charge-density wave domains are embedded inside a metallic background, or vice versa.
first_indexed 2024-03-09T04:32:37Z
format Article
id doaj.art-1b037461f45f46c1a855bc3dfefd38a5
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-09T04:32:37Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-1b037461f45f46c1a855bc3dfefd38a52023-12-03T13:33:26ZengMDPI AGCrystals2073-43522021-01-011117210.3390/cryst11010072Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>Kaushal K. Kesharpu0Vladislav D. Kochev1Pavel D. Grigoriev2Department of Theoretical Physics and Quantum Technology, National University of Science and Technology “MISiS”, 119049 Moscow, RussiaDepartment of Theoretical Physics and Quantum Technology, National University of Science and Technology “MISiS”, 119049 Moscow, RussiaDepartment of Theoretical Physics and Quantum Technology, National University of Science and Technology “MISiS”, 119049 Moscow, RussiaIn highly anisotropic organic superconductor (TMTSF)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ClO<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, superconducting (SC) phase coexists with metallic and spin-density wave phases in the form of domains. Using the Maxwell-Garnett approximation (MGA), we calculate the volume ratio and estimate the shape of these embedded SC domains from resistivity data at various temperature and anion disorder, controlled by the cooling rate or annealing time of (TMTSF)<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ClO<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> samples. We found that the variation of cooling rate and of annealing time affect differently the shape of SC domains. In all cases the SC domains have oblate shape, being the shortest along the interlayer <i>z</i>-axis. This contradicts the widely assumed filamentary superconductivity along the <i>z</i>-axis, used to explain the anisotropic superconductivity onset. We show that anisotropic resistivity drop at the SC onset can be described by the analytical MGA theory with anisotropic background resistance, while the anisotropic <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> can be explained by considering a finite size and flat shape of the samples. Due to a flat/needle sample shape, the probability of percolation via SC domains is the highest along the shortest sample dimension (<i>z</i>-axis), and the lowest along the sample length (<i>x</i>-axis). Our theory can be applied to other heterogeneous superconductors, where the size <i>d</i> of SC domains is much larger than the SC coherence length <inline-formula><math display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, e.g., cuprates, iron-based or organic superconductors. It is also applicable when the spin/charge-density wave domains are embedded inside a metallic background, or vice versa.https://www.mdpi.com/2073-4352/11/1/72organic superconductorsBeechgard saltsMaxwell-Garnett approximationhigh-Tc
spellingShingle Kaushal K. Kesharpu
Vladislav D. Kochev
Pavel D. Grigoriev
Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>
Crystals
organic superconductors
Beechgard salts
Maxwell-Garnett approximation
high-Tc
title Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>
title_full Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>
title_fullStr Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>
title_full_unstemmed Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>
title_short Evolution of Shape and Volume Fraction of Superconducting Domains with Temperature and Anion Disorder in (TMTSF)<sub>2</sub>ClO<sub>4</sub>
title_sort evolution of shape and volume fraction of superconducting domains with temperature and anion disorder in tmtsf sub 2 sub clo sub 4 sub
topic organic superconductors
Beechgard salts
Maxwell-Garnett approximation
high-Tc
url https://www.mdpi.com/2073-4352/11/1/72
work_keys_str_mv AT kaushalkkesharpu evolutionofshapeandvolumefractionofsuperconductingdomainswithtemperatureandaniondisorderintmtsfsub2subclosub4sub
AT vladislavdkochev evolutionofshapeandvolumefractionofsuperconductingdomainswithtemperatureandaniondisorderintmtsfsub2subclosub4sub
AT paveldgrigoriev evolutionofshapeandvolumefractionofsuperconductingdomainswithtemperatureandaniondisorderintmtsfsub2subclosub4sub