The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function

We present the z ≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars at z ≈ 5.7–6.2, with −28 ≲ M _1450 ≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate the z ≈ 6 QLF over −28 ≲ M _1450 ≲ −2...

Full description

Bibliographic Details
Main Authors: Jan-Torge Schindler, Eduardo Bañados, Thomas Connor, Roberto Decarli, Xiaohui Fan, Emanuele Paolo Farina, Chiara Mazzucchelli, Riccardo Nanni, Hans-Walter Rix, Daniel Stern, Bram P. Venemans, Fabian Walter
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/aca7ca
_version_ 1797695612713435136
author Jan-Torge Schindler
Eduardo Bañados
Thomas Connor
Roberto Decarli
Xiaohui Fan
Emanuele Paolo Farina
Chiara Mazzucchelli
Riccardo Nanni
Hans-Walter Rix
Daniel Stern
Bram P. Venemans
Fabian Walter
author_facet Jan-Torge Schindler
Eduardo Bañados
Thomas Connor
Roberto Decarli
Xiaohui Fan
Emanuele Paolo Farina
Chiara Mazzucchelli
Riccardo Nanni
Hans-Walter Rix
Daniel Stern
Bram P. Venemans
Fabian Walter
author_sort Jan-Torge Schindler
collection DOAJ
description We present the z ≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars at z ≈ 5.7–6.2, with −28 ≲ M _1450 ≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate the z ≈ 6 QLF over −28 ≲ M _1450 ≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ( z ) ∝ 10 ^k ^( ^z ^−6) ; k = −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of ${M}^{* }=-{26.38}_{-0.60}^{+0.79}\,\mathrm{mag}$ , a faint-end slope of $\alpha =-{1.70}_{-0.19}^{+0.29}$ , and a steep bright-end slope of $\beta =-{3.84}_{-1.21}^{+0.63}$ . Based on our new QLF model, we determine the quasar comoving spatial density at z ≈ 6 to be $n({M}_{1450}\lt -26)={1.16}_{-0.12}^{+0.13}\,{\mathrm{cGpc}}^{-3}$ . In comparison with the literature, we find the quasar density to evolve with a constant value of k ≈ −0.7, from z ≈ 7 to z ≈ 4. Additionally, we derive an ionizing emissivity of ${\epsilon }_{912}(z=6)={7.23}_{-1.02}^{+1.65}\times {10}^{22}\,\mathrm{erg}\,{{\rm{s}}}^{-1}\,{\mathrm{Hz}}^{-1}\,{\mathrm{cMpc}}^{-3}$ , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. at z ≈ 6, we calculate an H i photoionizing rate of Γ _H I ( z = 6) ≈ 6 × 10 ^−16 s ^−1 , strongly disfavoring a dominant role of quasars in hydrogen reionization.
first_indexed 2024-03-12T03:14:48Z
format Article
id doaj.art-1b15ea404cb24d26962d6f45af98a30a
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2024-03-12T03:14:48Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-1b15ea404cb24d26962d6f45af98a30a2023-09-03T14:11:16ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0194316710.3847/1538-4357/aca7caThe Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity FunctionJan-Torge Schindler0https://orcid.org/0000-0002-4544-8242Eduardo Bañados1https://orcid.org/0000-0002-2931-7824Thomas Connor2https://orcid.org/0000-0002-7898-7664Roberto Decarli3https://orcid.org/0000-0002-2662-8803Xiaohui Fan4https://orcid.org/0000-0003-3310-0131Emanuele Paolo Farina5https://orcid.org/0000-0002-6822-2254Chiara Mazzucchelli6https://orcid.org/0000-0002-5941-5214Riccardo Nanni7https://orcid.org/0000-0002-2579-4789Hans-Walter Rix8https://orcid.org/0000-0003-4996-9069Daniel Stern9https://orcid.org/0000-0003-2686-9241Bram P. Venemans10https://orcid.org/0000-0001-9024-8322Fabian Walter11https://orcid.org/0000-0003-4793-7880Max Planck Institut für Astronomie , Königstuhl 17, D-69117, Heidelberg, Germany ; schindler@strw.leidenuniv.nl; Leiden Observatory, Leiden University , P.O. Box 9513, 2300 RA Leiden, The NetherlandsMax Planck Institut für Astronomie , Königstuhl 17, D-69117, Heidelberg, Germany ; schindler@strw.leidenuniv.nlJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Drive, Pasadena, CA 91109, USA; Center for Astrophysics | Harvard & Smithsonian , 60 Garden St., Cambridge, MA 02138, USAINAF—Osservatorio di Astrofisica e Scienza dello Spazio , via Gobetti 93/3, I-40129, Bologna, ItalySteward Observatory, University of Arizona , 933 N Cherry Ave, Tucson, AZ 85721, USAGemini Observatory , NSF’s NOIRLab, 670 N A’ohoku Place, Hilo, HI 96720, USANúcleo de Astronomía, Facultad de Ingeniera y Ciencias, Universidad Diego Portales , Av. Ejército 441, Santiago, 8320000, ChileLeiden Observatory, Leiden University , P.O. Box 9513, 2300 RA Leiden, The NetherlandsMax Planck Institut für Astronomie , Königstuhl 17, D-69117, Heidelberg, Germany ; schindler@strw.leidenuniv.nlJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Drive, Pasadena, CA 91109, USALeiden Observatory, Leiden University , P.O. Box 9513, 2300 RA Leiden, The NetherlandsMax Planck Institut für Astronomie , Königstuhl 17, D-69117, Heidelberg, Germany ; schindler@strw.leidenuniv.nlWe present the z ≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars at z ≈ 5.7–6.2, with −28 ≲ M _1450 ≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate the z ≈ 6 QLF over −28 ≲ M _1450 ≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ( z ) ∝ 10 ^k ^( ^z ^−6) ; k = −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of ${M}^{* }=-{26.38}_{-0.60}^{+0.79}\,\mathrm{mag}$ , a faint-end slope of $\alpha =-{1.70}_{-0.19}^{+0.29}$ , and a steep bright-end slope of $\beta =-{3.84}_{-1.21}^{+0.63}$ . Based on our new QLF model, we determine the quasar comoving spatial density at z ≈ 6 to be $n({M}_{1450}\lt -26)={1.16}_{-0.12}^{+0.13}\,{\mathrm{cGpc}}^{-3}$ . In comparison with the literature, we find the quasar density to evolve with a constant value of k ≈ −0.7, from z ≈ 7 to z ≈ 4. Additionally, we derive an ionizing emissivity of ${\epsilon }_{912}(z=6)={7.23}_{-1.02}^{+1.65}\times {10}^{22}\,\mathrm{erg}\,{{\rm{s}}}^{-1}\,{\mathrm{Hz}}^{-1}\,{\mathrm{cMpc}}^{-3}$ , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. at z ≈ 6, we calculate an H i photoionizing rate of Γ _H I ( z = 6) ≈ 6 × 10 ^−16 s ^−1 , strongly disfavoring a dominant role of quasars in hydrogen reionization.https://doi.org/10.3847/1538-4357/aca7caQuasarsSupermassive black holesReionizationEarly universeLuminosity function
spellingShingle Jan-Torge Schindler
Eduardo Bañados
Thomas Connor
Roberto Decarli
Xiaohui Fan
Emanuele Paolo Farina
Chiara Mazzucchelli
Riccardo Nanni
Hans-Walter Rix
Daniel Stern
Bram P. Venemans
Fabian Walter
The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function
The Astrophysical Journal
Quasars
Supermassive black holes
Reionization
Early universe
Luminosity function
title The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function
title_full The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function
title_fullStr The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function
title_full_unstemmed The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function
title_short The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function
title_sort pan starrs1 z 5 6 quasar survey iii the z ≈ 6 quasar luminosity function
topic Quasars
Supermassive black holes
Reionization
Early universe
Luminosity function
url https://doi.org/10.3847/1538-4357/aca7ca
work_keys_str_mv AT jantorgeschindler thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT eduardobanados thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT thomasconnor thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT robertodecarli thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT xiaohuifan thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT emanuelepaolofarina thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT chiaramazzucchelli thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT riccardonanni thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT hanswalterrix thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT danielstern thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT brampvenemans thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT fabianwalter thepanstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT jantorgeschindler panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT eduardobanados panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT thomasconnor panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT robertodecarli panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT xiaohuifan panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT emanuelepaolofarina panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT chiaramazzucchelli panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT riccardonanni panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT hanswalterrix panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT danielstern panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT brampvenemans panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction
AT fabianwalter panstarrs1z56quasarsurveyiiithez6quasarluminosityfunction