Equiseparable chemical trees
Let n1(e|T) and n2(e|T) denote the number of vertices of a tree T, lying on the two sides of the edge e. Let T1 and T2 be two trees with equal number of vertices, let e be an edge of T1 and f an edge of T2. Then e and f are said to be equiseparable if either n1(e|T1) = n1(f|T2) or n1(e|T1) = n2(f|T2...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Serbian Chemical Society
2003-01-01
|
Series: | Journal of the Serbian Chemical Society |
Subjects: | |
Online Access: | http://www.doiserbia.nb.rs/img/doi/0352-5139/2003/0352-51390307549G.pdf |
_version_ | 1818983909613895680 |
---|---|
author | Gutman Ivan Arsić Biljana Furtula Boris |
author_facet | Gutman Ivan Arsić Biljana Furtula Boris |
author_sort | Gutman Ivan |
collection | DOAJ |
description | Let n1(e|T) and n2(e|T) denote the number of vertices of a tree T, lying on the two sides of the edge e. Let T1 and T2 be two trees with equal number of vertices, let e be an edge of T1 and f an edge of T2. Then e and f are said to be equiseparable if either n1(e|T1) = n1(f|T2) or n1(e|T1) = n2(f|T2). If all edges of T1 and T2 can be chosen so as to form equiseparable pairs, then T1 and T2 are equiseparable trees. A number of molecular structure-descriptors of equiseparable chemical trees coincide, implying that the corresponding alkane isomers must have similar physico-chemical properties. It is shown how equiseparable chemical trees can be constructed in a systematic manner. . |
first_indexed | 2024-12-20T18:10:36Z |
format | Article |
id | doaj.art-1b2d430738b744a981029f11454f0810 |
institution | Directory Open Access Journal |
issn | 0352-5139 1820-7421 |
language | English |
last_indexed | 2024-12-20T18:10:36Z |
publishDate | 2003-01-01 |
publisher | Serbian Chemical Society |
record_format | Article |
series | Journal of the Serbian Chemical Society |
spelling | doaj.art-1b2d430738b744a981029f11454f08102022-12-21T19:30:28ZengSerbian Chemical SocietyJournal of the Serbian Chemical Society0352-51391820-74212003-01-0168754955510.2298/JSC0307549G0352-51390307549GEquiseparable chemical treesGutman Ivan0Arsić Biljana1Furtula Boris2Faculty ov Science, University of Kragujevac, P. O. Box 60, 34000 KragujevacFaculty of Science, University of Niš, Višegradska 33, 18000 Niš, Serbia and MontenegroFaculty ov Science, University of Kragujevac, P. O. Box 60, 34000 KragujevacLet n1(e|T) and n2(e|T) denote the number of vertices of a tree T, lying on the two sides of the edge e. Let T1 and T2 be two trees with equal number of vertices, let e be an edge of T1 and f an edge of T2. Then e and f are said to be equiseparable if either n1(e|T1) = n1(f|T2) or n1(e|T1) = n2(f|T2). If all edges of T1 and T2 can be chosen so as to form equiseparable pairs, then T1 and T2 are equiseparable trees. A number of molecular structure-descriptors of equiseparable chemical trees coincide, implying that the corresponding alkane isomers must have similar physico-chemical properties. It is shown how equiseparable chemical trees can be constructed in a systematic manner. .http://www.doiserbia.nb.rs/img/doi/0352-5139/2003/0352-51390307549G.pdfwiener indexvariable wiener indexchemical treesalkanesequiseparability |
spellingShingle | Gutman Ivan Arsić Biljana Furtula Boris Equiseparable chemical trees Journal of the Serbian Chemical Society wiener index variable wiener index chemical trees alkanes equiseparability |
title | Equiseparable chemical trees |
title_full | Equiseparable chemical trees |
title_fullStr | Equiseparable chemical trees |
title_full_unstemmed | Equiseparable chemical trees |
title_short | Equiseparable chemical trees |
title_sort | equiseparable chemical trees |
topic | wiener index variable wiener index chemical trees alkanes equiseparability |
url | http://www.doiserbia.nb.rs/img/doi/0352-5139/2003/0352-51390307549G.pdf |
work_keys_str_mv | AT gutmanivan equiseparablechemicaltrees AT arsicbiljana equiseparablechemicaltrees AT furtulaboris equiseparablechemicaltrees |