Evaluating capabilities of machine learning algorithms for aquatic vegetation classification in temperate wetlands using multi-temporal Sentinel-2 data

Different perspectives use of machine learning (ML) algorithms have proven their performance depends on the quality of reference data. This is particularly true when targets are complex environments, such as wetlands, on which a vast majority of studies are site-specific and based on a single date....

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Erika Piaser, Paolo Villa
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: Elsevier 2023-03-01
Loạt:International Journal of Applied Earth Observations and Geoinformation
Những chủ đề:
Truy cập trực tuyến:http://www.sciencedirect.com/science/article/pii/S1569843223000249