Regularity of solutions to 3-D nematic liquid crystal flows

In this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $uin L^{q}(0,T;L^p(mathbb{R}^3))$, $frac{2}{q}+frac{3}{p}leq1$, $3<pleqinfty$; or $uin L^{alpha}(0,T;L^{eta}(mathbb{R}^3))$, $frac{2}{alpha}+frac{3}{eta}leq 2$, $frac{3}{2}&...

Full description

Bibliographic Details
Main Authors: Qiao Liu, Shangbin Cui
Format: Article
Language:English
Published: Texas State University 2010-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/173/abstr.html
_version_ 1819117111379755008
author Qiao Liu
Shangbin Cui
author_facet Qiao Liu
Shangbin Cui
author_sort Qiao Liu
collection DOAJ
description In this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $uin L^{q}(0,T;L^p(mathbb{R}^3))$, $frac{2}{q}+frac{3}{p}leq1$, $3<pleqinfty$; or $uin L^{alpha}(0,T;L^{eta}(mathbb{R}^3))$, $frac{2}{alpha}+frac{3}{eta}leq 2$, $frac{3}{2}< etaleqinfty$, then the solution $(u,d)$ is regular on $(0,T]$.
first_indexed 2024-12-22T05:27:47Z
format Article
id doaj.art-1b49aed925d844f1b774d8cadc8e8e50
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-22T05:27:47Z
publishDate 2010-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-1b49aed925d844f1b774d8cadc8e8e502022-12-21T18:37:32ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912010-12-012010173,15Regularity of solutions to 3-D nematic liquid crystal flowsQiao LiuShangbin CuiIn this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $uin L^{q}(0,T;L^p(mathbb{R}^3))$, $frac{2}{q}+frac{3}{p}leq1$, $3<pleqinfty$; or $uin L^{alpha}(0,T;L^{eta}(mathbb{R}^3))$, $frac{2}{alpha}+frac{3}{eta}leq 2$, $frac{3}{2}< etaleqinfty$, then the solution $(u,d)$ is regular on $(0,T]$.http://ejde.math.txstate.edu/Volumes/2010/173/abstr.htmlLiquid crystal flowinitial value problemregularity of solutions
spellingShingle Qiao Liu
Shangbin Cui
Regularity of solutions to 3-D nematic liquid crystal flows
Electronic Journal of Differential Equations
Liquid crystal flow
initial value problem
regularity of solutions
title Regularity of solutions to 3-D nematic liquid crystal flows
title_full Regularity of solutions to 3-D nematic liquid crystal flows
title_fullStr Regularity of solutions to 3-D nematic liquid crystal flows
title_full_unstemmed Regularity of solutions to 3-D nematic liquid crystal flows
title_short Regularity of solutions to 3-D nematic liquid crystal flows
title_sort regularity of solutions to 3 d nematic liquid crystal flows
topic Liquid crystal flow
initial value problem
regularity of solutions
url http://ejde.math.txstate.edu/Volumes/2010/173/abstr.html
work_keys_str_mv AT qiaoliu regularityofsolutionsto3dnematicliquidcrystalflows
AT shangbincui regularityofsolutionsto3dnematicliquidcrystalflows