Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces

In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which i...

Full description

Bibliographic Details
Main Authors: Hou Lanbao, Du Feng, Mao Jing, Wu Chuanxi
Format: Article
Language:English
Published: De Gruyter 2021-10-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2021-0100
_version_ 1819001723687010304
author Hou Lanbao
Du Feng
Mao Jing
Wu Chuanxi
author_facet Hou Lanbao
Du Feng
Mao Jing
Wu Chuanxi
author_sort Hou Lanbao
collection DOAJ
description In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem.
first_indexed 2024-12-20T22:53:45Z
format Article
id doaj.art-1b7b37e179f04ca3bb183c59df3d2dfd
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-20T22:53:45Z
publishDate 2021-10-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-1b7b37e179f04ca3bb183c59df3d2dfd2022-12-21T19:24:09ZengDe GruyterOpen Mathematics2391-54552021-10-011911110111910.1515/math-2021-0100Universal inequalities of the poly-drifting Laplacian on smooth metric measure spacesHou Lanbao0Du Feng1Mao Jing2Wu Chuanxi3Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, ChinaSchool of Mathematics and Physics Science, Jingchu University of Technology, Jingmen, 448000, ChinaFaculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, ChinaFaculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, ChinaIn this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem.https://doi.org/10.1515/math-2021-0100eigenvaluesuniversal inequalitiespoly-drifting laplaciansmooth metric measure spaceweighted ricci curvature35p1553c2053c42
spellingShingle Hou Lanbao
Du Feng
Mao Jing
Wu Chuanxi
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
Open Mathematics
eigenvalues
universal inequalities
poly-drifting laplacian
smooth metric measure space
weighted ricci curvature
35p15
53c20
53c42
title Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_full Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_fullStr Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_full_unstemmed Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_short Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_sort universal inequalities of the poly drifting laplacian on smooth metric measure spaces
topic eigenvalues
universal inequalities
poly-drifting laplacian
smooth metric measure space
weighted ricci curvature
35p15
53c20
53c42
url https://doi.org/10.1515/math-2021-0100
work_keys_str_mv AT houlanbao universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
AT dufeng universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
AT maojing universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
AT wuchuanxi universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces