Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces

In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which i...

Full description

Bibliographic Details
Main Authors: Hou Lanbao, Du Feng, Mao Jing, Wu Chuanxi
Format: Article
Language:English
Published: De Gruyter 2021-10-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2021-0100

Similar Items