Summary: | We are considering typed hierarchies of total, continuous functionals using
complete, separable metric spaces at the base types. We pay special attention
to the so called Urysohn space constructed by P. Urysohn. One of the properties
of the Urysohn space is that every other separable metric space can be
isometrically embedded into it. We discuss why the Urysohn space may be
considered as the universal model of possibly infinitary outputs of algorithms.
The main result is that all our typed hierarchies may be topologically
embedded, type by type, into the corresponding hierarchy over the Urysohn
space. As a preparation for this, we prove an effective density theorem that is
also of independent interest.
|