Local invariance via comparison functions

We consider the ordinary differential equation $u'(t)=f(t,u(t))$, where $f:[a,b]imes Do mathbb{R}^n$ is a given function, while $D$ is an open subset in $mathbb{R}^n$. We prove that, if $Ksubset D$ is locally closed and there exists a comparison function $omega:[a,b]imesmathbb{R}_+o mathbb{R}$...

Full description

Bibliographic Details
Main Authors: Ovidiu Carja, Mihai Necula, Ioan I. Vrabie
Format: Article
Language:English
Published: Texas State University 2004-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2004/50/abstr.html

Similar Items