Hyers Stability and Multi-Fuzzy Banach Algebra

In this paper, we define multi-fuzzy Banach algebra and then prove the stability of involution on multi-fuzzy Banach algebra by fixed point method. That is, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow&...

Full description

Bibliographic Details
Main Authors: Parvaneh Lo′lo′, Ehsan Movahednia, Manuel De la Sen
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/1/106
Description
Summary:In this paper, we define multi-fuzzy Banach algebra and then prove the stability of involution on multi-fuzzy Banach algebra by fixed point method. That is, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>A</mi></mrow></semantics></math></inline-formula> is an approximately involution on multi-fuzzy Banach algebra <i>A</i>, then there exists an involution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>A</mi></mrow></semantics></math></inline-formula> which is near to <i>f</i>. In addition, under some conditions on <i>f</i>, the algebra <i>A</i> has multi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>*</mo></msup></semantics></math></inline-formula>-algebra structure with involution <i>H</i>.
ISSN:2227-7390