Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review

The use of low-emission combustion technologies in power boilers has contributed to a significant increase in the rate of high-temperature corrosion in boilers and increased risk of failure. The use of low quality biomass and waste, caused by the current policies pressing on the decarbonization of t...

Full description

Bibliographic Details
Main Authors: Tomasz Hardy, Amit Arora, Halina Pawlak-Kruczek, Wojciech Rafajłowicz, Jerzy Wietrzych, Łukasz Niedźwiecki, Vishwajeet, Krzysztof Mościcki
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/21/7132
Description
Summary:The use of low-emission combustion technologies in power boilers has contributed to a significant increase in the rate of high-temperature corrosion in boilers and increased risk of failure. The use of low quality biomass and waste, caused by the current policies pressing on the decarbonization of the energy generation sector, might exacerbate this problem. Additionally, all of the effects of the valorization techniques on the inorganic fraction of the solid fuel have become an additional uncertainty. As a result, fast and reliable corrosion diagnostic techniques are slowly becoming a necessity to maintain the security of the energy supply for the power grid. Non-destructive testing methods (NDT) are helpful in detecting these threats. The most important NDT methods, which can be used to assess the degree of corrosion of boiler tubes, detection of the tubes’ surface roughness and the internal structural defects, have been presented in the paper. The idea of the use of optical techniques in the initial diagnosis of boiler evaporators’ surface conditions has also been presented.
ISSN:1996-1073