SU(3) symmetry breaking in charmed baryon decays

Abstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of $$\mathbf{B}_c\rightarrow \mathbf{B}_n M$$ Bc→BnM , with $$\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)$$ Bc=(Ξc0,Ξc+,Λc+) and $$\mathbf{B}_n(M)$$ Bn(M) the b...

Full description

Bibliographic Details
Main Authors: C. Q. Geng, Y. K. Hsiao, Chia-Wei Liu, Tien-Hsueh Tsai
Format: Article
Language:English
Published: SpringerOpen 2018-07-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-6075-7
_version_ 1818601754697138176
author C. Q. Geng
Y. K. Hsiao
Chia-Wei Liu
Tien-Hsueh Tsai
author_facet C. Q. Geng
Y. K. Hsiao
Chia-Wei Liu
Tien-Hsueh Tsai
author_sort C. Q. Geng
collection DOAJ
description Abstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of $$\mathbf{B}_c\rightarrow \mathbf{B}_n M$$ Bc→BnM , with $$\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)$$ Bc=(Ξc0,Ξc+,Λc+) and $$\mathbf{B}_n(M)$$ Bn(M) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of $${\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})$$ B(Λc+→Σ0K+,Λ0K+) and $$R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)$$ RK/π′=B(Ξc0→Ξ-K+) /$${\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)$$ B(Ξc0→Ξ-π+) . In addition, we obtain that $${\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}$$ B(Ξc0→Ξ-K+,Σ-π+)=(4.6±1.7,12.8±3.1)×10-4 , $${\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}$$ B(Ξc0→pK-,Σ+π-)=(3.0±1.0,5.2±1.6)×10-4 and $${\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}$$ B(Ξc+→Σ0(+)π+(0))=(10.3±1.7)×10-4 , which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.
first_indexed 2024-12-16T12:56:25Z
format Article
id doaj.art-1b8b2fdfef5e480fad1799e9e9171ad9
institution Directory Open Access Journal
issn 1434-6044
1434-6052
language English
last_indexed 2024-12-16T12:56:25Z
publishDate 2018-07-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-1b8b2fdfef5e480fad1799e9e9171ad92022-12-21T22:31:00ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522018-07-017871610.1140/epjc/s10052-018-6075-7SU(3) symmetry breaking in charmed baryon decaysC. Q. Geng0Y. K. Hsiao1Chia-Wei Liu2Tien-Hsueh Tsai3School of Physics and Information Engineering, Shanxi Normal UniversitySchool of Physics and Information Engineering, Shanxi Normal UniversityDepartment of Physics, National Tsing Hua UniversityDepartment of Physics, National Tsing Hua UniversityAbstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of $$\mathbf{B}_c\rightarrow \mathbf{B}_n M$$ Bc→BnM , with $$\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)$$ Bc=(Ξc0,Ξc+,Λc+) and $$\mathbf{B}_n(M)$$ Bn(M) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of $${\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})$$ B(Λc+→Σ0K+,Λ0K+) and $$R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)$$ RK/π′=B(Ξc0→Ξ-K+) /$${\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)$$ B(Ξc0→Ξ-π+) . In addition, we obtain that $${\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}$$ B(Ξc0→Ξ-K+,Σ-π+)=(4.6±1.7,12.8±3.1)×10-4 , $${\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}$$ B(Ξc0→pK-,Σ+π-)=(3.0±1.0,5.2±1.6)×10-4 and $${\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}$$ B(Ξc+→Σ0(+)π+(0))=(10.3±1.7)×10-4 , which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.http://link.springer.com/article/10.1140/epjc/s10052-018-6075-7
spellingShingle C. Q. Geng
Y. K. Hsiao
Chia-Wei Liu
Tien-Hsueh Tsai
SU(3) symmetry breaking in charmed baryon decays
European Physical Journal C: Particles and Fields
title SU(3) symmetry breaking in charmed baryon decays
title_full SU(3) symmetry breaking in charmed baryon decays
title_fullStr SU(3) symmetry breaking in charmed baryon decays
title_full_unstemmed SU(3) symmetry breaking in charmed baryon decays
title_short SU(3) symmetry breaking in charmed baryon decays
title_sort su 3 symmetry breaking in charmed baryon decays
url http://link.springer.com/article/10.1140/epjc/s10052-018-6075-7
work_keys_str_mv AT cqgeng su3symmetrybreakingincharmedbaryondecays
AT ykhsiao su3symmetrybreakingincharmedbaryondecays
AT chiaweiliu su3symmetrybreakingincharmedbaryondecays
AT tienhsuehtsai su3symmetrybreakingincharmedbaryondecays