SU(3) symmetry breaking in charmed baryon decays
Abstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of $$\mathbf{B}_c\rightarrow \mathbf{B}_n M$$ Bc→BnM , with $$\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)$$ Bc=(Ξc0,Ξc+,Λc+) and $$\mathbf{B}_n(M)$$ Bn(M) the b...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-07-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-018-6075-7 |
_version_ | 1818601754697138176 |
---|---|
author | C. Q. Geng Y. K. Hsiao Chia-Wei Liu Tien-Hsueh Tsai |
author_facet | C. Q. Geng Y. K. Hsiao Chia-Wei Liu Tien-Hsueh Tsai |
author_sort | C. Q. Geng |
collection | DOAJ |
description | Abstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of $$\mathbf{B}_c\rightarrow \mathbf{B}_n M$$ Bc→BnM , with $$\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)$$ Bc=(Ξc0,Ξc+,Λc+) and $$\mathbf{B}_n(M)$$ Bn(M) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of $${\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})$$ B(Λc+→Σ0K+,Λ0K+) and $$R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)$$ RK/π′=B(Ξc0→Ξ-K+) /$${\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)$$ B(Ξc0→Ξ-π+) . In addition, we obtain that $${\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}$$ B(Ξc0→Ξ-K+,Σ-π+)=(4.6±1.7,12.8±3.1)×10-4 , $${\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}$$ B(Ξc0→pK-,Σ+π-)=(3.0±1.0,5.2±1.6)×10-4 and $${\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}$$ B(Ξc+→Σ0(+)π+(0))=(10.3±1.7)×10-4 , which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments. |
first_indexed | 2024-12-16T12:56:25Z |
format | Article |
id | doaj.art-1b8b2fdfef5e480fad1799e9e9171ad9 |
institution | Directory Open Access Journal |
issn | 1434-6044 1434-6052 |
language | English |
last_indexed | 2024-12-16T12:56:25Z |
publishDate | 2018-07-01 |
publisher | SpringerOpen |
record_format | Article |
series | European Physical Journal C: Particles and Fields |
spelling | doaj.art-1b8b2fdfef5e480fad1799e9e9171ad92022-12-21T22:31:00ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522018-07-017871610.1140/epjc/s10052-018-6075-7SU(3) symmetry breaking in charmed baryon decaysC. Q. Geng0Y. K. Hsiao1Chia-Wei Liu2Tien-Hsueh Tsai3School of Physics and Information Engineering, Shanxi Normal UniversitySchool of Physics and Information Engineering, Shanxi Normal UniversityDepartment of Physics, National Tsing Hua UniversityDepartment of Physics, National Tsing Hua UniversityAbstract We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of $$\mathbf{B}_c\rightarrow \mathbf{B}_n M$$ Bc→BnM , with $$\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)$$ Bc=(Ξc0,Ξc+,Λc+) and $$\mathbf{B}_n(M)$$ Bn(M) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of $${\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})$$ B(Λc+→Σ0K+,Λ0K+) and $$R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)$$ RK/π′=B(Ξc0→Ξ-K+) /$${\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)$$ B(Ξc0→Ξ-π+) . In addition, we obtain that $${\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}$$ B(Ξc0→Ξ-K+,Σ-π+)=(4.6±1.7,12.8±3.1)×10-4 , $${\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}$$ B(Ξc0→pK-,Σ+π-)=(3.0±1.0,5.2±1.6)×10-4 and $${\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}$$ B(Ξc+→Σ0(+)π+(0))=(10.3±1.7)×10-4 , which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.http://link.springer.com/article/10.1140/epjc/s10052-018-6075-7 |
spellingShingle | C. Q. Geng Y. K. Hsiao Chia-Wei Liu Tien-Hsueh Tsai SU(3) symmetry breaking in charmed baryon decays European Physical Journal C: Particles and Fields |
title | SU(3) symmetry breaking in charmed baryon decays |
title_full | SU(3) symmetry breaking in charmed baryon decays |
title_fullStr | SU(3) symmetry breaking in charmed baryon decays |
title_full_unstemmed | SU(3) symmetry breaking in charmed baryon decays |
title_short | SU(3) symmetry breaking in charmed baryon decays |
title_sort | su 3 symmetry breaking in charmed baryon decays |
url | http://link.springer.com/article/10.1140/epjc/s10052-018-6075-7 |
work_keys_str_mv | AT cqgeng su3symmetrybreakingincharmedbaryondecays AT ykhsiao su3symmetrybreakingincharmedbaryondecays AT chiaweiliu su3symmetrybreakingincharmedbaryondecays AT tienhsuehtsai su3symmetrybreakingincharmedbaryondecays |