Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis
Metformin is one of the first-line and most widely prescribed drugs to treat type 2 diabetes (T2D). Its clearance from circulation is mostly facilitated by SLC22A2 (OCT2) in the renal cells. SLC22A2 is a polyspecific organic cation transporter and mediate transport of structurally unrelated endogeno...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-12-01
|
Series: | Journal of Genetic Engineering and Biotechnology |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1687157X18300039 |
_version_ | 1797203347161219072 |
---|---|
author | Abu Ashfaqur Sajib Tasmia Islam Nilanjana Paul Sabina Yeasmin |
author_facet | Abu Ashfaqur Sajib Tasmia Islam Nilanjana Paul Sabina Yeasmin |
author_sort | Abu Ashfaqur Sajib |
collection | DOAJ |
description | Metformin is one of the first-line and most widely prescribed drugs to treat type 2 diabetes (T2D). Its clearance from circulation is mostly facilitated by SLC22A2 (OCT2) in the renal cells. SLC22A2 is a polyspecific organic cation transporter and mediate transport of structurally unrelated endogenous and exogenous compounds including many drugs. rs316019 (p.270A > S) is the most common variant of SLC22A2 with a frequency as high as 15% or more in many populations. The 270S form of SLC22A2 clears metformin from circulation at much reduced level compared to the 270A form. If accumulated, metformin increases plasma lactate level in a concentration-dependent manner which can lead to a condition known as metformin-associated lactic acidosis (MALA). MALA is a potentially life-threatening complication with a mortality rate of 30–50%. Pre-existing clinical conditions, such as renal impairment, sepsis, anoxia, etc may make individuals more prone to MALA. In this study, we used computational approaches to investigate the effect of 270A > S change in SLC22A2 on interaction with metformin and other drugs. Based on the structural models, all substrates bind to the same pocket of SLC22A2. The substrates fit better to the binding site of 270A form of SLC22A2. The binding site has a few core interacting residues, among which SER358 appears to be the most important. It is an in silico prediction that the T2D patients, who are under metformin regimen, should be cautious in taking ranitidine (an over-the-counter sold drug) on a regular basis as it may lead to metformin associated lactate accumulation in blood. Keywords: SLC22A2, Rs316019, Metformin, Metformin associated lactic acidosis, Type 2 diabetes |
first_indexed | 2024-04-24T08:17:53Z |
format | Article |
id | doaj.art-1bb180b1956245a2a620290c5e0e22c5 |
institution | Directory Open Access Journal |
issn | 1687-157X |
language | English |
last_indexed | 2024-04-24T08:17:53Z |
publishDate | 2018-12-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Genetic Engineering and Biotechnology |
spelling | doaj.art-1bb180b1956245a2a620290c5e0e22c52024-04-17T02:43:38ZengElsevierJournal of Genetic Engineering and Biotechnology1687-157X2018-12-01162769775Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysisAbu Ashfaqur Sajib0Tasmia Islam1Nilanjana Paul2Sabina Yeasmin3Corresponding author.; Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, BangladeshDepartment of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, BangladeshDepartment of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, BangladeshDepartment of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, BangladeshMetformin is one of the first-line and most widely prescribed drugs to treat type 2 diabetes (T2D). Its clearance from circulation is mostly facilitated by SLC22A2 (OCT2) in the renal cells. SLC22A2 is a polyspecific organic cation transporter and mediate transport of structurally unrelated endogenous and exogenous compounds including many drugs. rs316019 (p.270A > S) is the most common variant of SLC22A2 with a frequency as high as 15% or more in many populations. The 270S form of SLC22A2 clears metformin from circulation at much reduced level compared to the 270A form. If accumulated, metformin increases plasma lactate level in a concentration-dependent manner which can lead to a condition known as metformin-associated lactic acidosis (MALA). MALA is a potentially life-threatening complication with a mortality rate of 30–50%. Pre-existing clinical conditions, such as renal impairment, sepsis, anoxia, etc may make individuals more prone to MALA. In this study, we used computational approaches to investigate the effect of 270A > S change in SLC22A2 on interaction with metformin and other drugs. Based on the structural models, all substrates bind to the same pocket of SLC22A2. The substrates fit better to the binding site of 270A form of SLC22A2. The binding site has a few core interacting residues, among which SER358 appears to be the most important. It is an in silico prediction that the T2D patients, who are under metformin regimen, should be cautious in taking ranitidine (an over-the-counter sold drug) on a regular basis as it may lead to metformin associated lactate accumulation in blood. Keywords: SLC22A2, Rs316019, Metformin, Metformin associated lactic acidosis, Type 2 diabeteshttp://www.sciencedirect.com/science/article/pii/S1687157X18300039 |
spellingShingle | Abu Ashfaqur Sajib Tasmia Islam Nilanjana Paul Sabina Yeasmin Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis Journal of Genetic Engineering and Biotechnology |
title | Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis |
title_full | Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis |
title_fullStr | Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis |
title_full_unstemmed | Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis |
title_short | Interaction of rs316019 variants of SLC22A2 with metformin and other drugs- an in silico analysis |
title_sort | interaction of rs316019 variants of slc22a2 with metformin and other drugs an in silico analysis |
url | http://www.sciencedirect.com/science/article/pii/S1687157X18300039 |
work_keys_str_mv | AT abuashfaqursajib interactionofrs316019variantsofslc22a2withmetforminandotherdrugsaninsilicoanalysis AT tasmiaislam interactionofrs316019variantsofslc22a2withmetforminandotherdrugsaninsilicoanalysis AT nilanjanapaul interactionofrs316019variantsofslc22a2withmetforminandotherdrugsaninsilicoanalysis AT sabinayeasmin interactionofrs316019variantsofslc22a2withmetforminandotherdrugsaninsilicoanalysis |