Summary: | <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth <it>in vitro </it>and <it>in vivo </it>using established medulloblastoma models.</p> <p>Methods</p> <p>Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p>Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC) 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In <it>in vivo </it>medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model.</p> <p>Conclusions</p> <p>The <it>in vitro </it>and <it>in vivo </it>data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.</p>
|