Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach

Abstract The electronic structure and thermoelectric properties of MoX2 (X = S, Se) Van der Waals heterojunctions are reported, with the intention of motivating the design of electronic devices using such materials. Calculations indicate the proposed heterojunctions are thermodynamically stable and...

Full description

Bibliographic Details
Main Authors: Oscar A. López‐Galán, Israel Perez, John Nogan, Manuel Ramos
Format: Article
Language:English
Published: Wiley-VCH 2023-04-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202202339
_version_ 1797772366743339008
author Oscar A. López‐Galán
Israel Perez
John Nogan
Manuel Ramos
author_facet Oscar A. López‐Galán
Israel Perez
John Nogan
Manuel Ramos
author_sort Oscar A. López‐Galán
collection DOAJ
description Abstract The electronic structure and thermoelectric properties of MoX2 (X = S, Se) Van der Waals heterojunctions are reported, with the intention of motivating the design of electronic devices using such materials. Calculations indicate the proposed heterojunctions are thermodynamically stable and present a band gap reduction from 1.8 eV to 0.8 eV. The latter effect is highly related to interactions between metallic d‐character orbitals and chalcogen p‐character orbitals. The theoretical approach allows to predict a transition from semiconducting to semi‐metallic behavior. The band alignment indicates a type‐I heterojunction and band offsets of 0.2 eV. Transport properties show clear n‐type nature and a high Seebeck coefficient at 300 K, along with conductivity values (σ/τ) in the order of 1020. Lastly, using the Landauer approach and ballistic transport, the proposed heterojunctions can be modeled as a channel material for a typical one‐gate transistor configuration predicting subthreshold values of ≈60 mV dec−1 and field–effect mobilities of ≈160 cm−2 V−1 s−1.
first_indexed 2024-03-12T21:50:51Z
format Article
id doaj.art-1bc4c3e0f66f4c768fa9a596d17d156e
institution Directory Open Access Journal
issn 2196-7350
language English
last_indexed 2024-03-12T21:50:51Z
publishDate 2023-04-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj.art-1bc4c3e0f66f4c768fa9a596d17d156e2023-07-26T01:40:38ZengWiley-VCHAdvanced Materials Interfaces2196-73502023-04-011011n/an/a10.1002/admi.202202339Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer ApproachOscar A. López‐Galán0Israel Perez1John Nogan2Manuel Ramos3Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen GermanyConsejo Nacional de Ciencia y Tecnología‐Departamento de Física y Matemáticas Instituto de Ingeniería y Tecnología Universidad Autónoma de Ciudad Juárez Avenida del Charro #450, Ciudad Juárez Chihuahua 32310 MexicoCenter for Integrated Nanotechnologies Sandia National Laboratories 1101 Eubank Bldg. SE Albuquerque NM 87110 USADepartamento de Física y Matemáticas Instituto de Ingeniería y Tecnología Universidad Autónoma de Ciudad Juárez Avenida del Charro #450 N Ciudad Juárez Chihuahua 32310 MexicoAbstract The electronic structure and thermoelectric properties of MoX2 (X = S, Se) Van der Waals heterojunctions are reported, with the intention of motivating the design of electronic devices using such materials. Calculations indicate the proposed heterojunctions are thermodynamically stable and present a band gap reduction from 1.8 eV to 0.8 eV. The latter effect is highly related to interactions between metallic d‐character orbitals and chalcogen p‐character orbitals. The theoretical approach allows to predict a transition from semiconducting to semi‐metallic behavior. The band alignment indicates a type‐I heterojunction and band offsets of 0.2 eV. Transport properties show clear n‐type nature and a high Seebeck coefficient at 300 K, along with conductivity values (σ/τ) in the order of 1020. Lastly, using the Landauer approach and ballistic transport, the proposed heterojunctions can be modeled as a channel material for a typical one‐gate transistor configuration predicting subthreshold values of ≈60 mV dec−1 and field–effect mobilities of ≈160 cm−2 V−1 s−1.https://doi.org/10.1002/admi.202202339band gapdensity functional theoryheterojunctionssemiconductors
spellingShingle Oscar A. López‐Galán
Israel Perez
John Nogan
Manuel Ramos
Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach
Advanced Materials Interfaces
band gap
density functional theory
heterojunctions
semiconductors
title Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach
title_full Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach
title_fullStr Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach
title_full_unstemmed Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach
title_short Determining the Electronic Structure and Thermoelectric Properties of MoS2/MoSe2 Type‐I Heterojunction by DFT and the Landauer Approach
title_sort determining the electronic structure and thermoelectric properties of mos2 mose2 type i heterojunction by dft and the landauer approach
topic band gap
density functional theory
heterojunctions
semiconductors
url https://doi.org/10.1002/admi.202202339
work_keys_str_mv AT oscaralopezgalan determiningtheelectronicstructureandthermoelectricpropertiesofmos2mose2typeiheterojunctionbydftandthelandauerapproach
AT israelperez determiningtheelectronicstructureandthermoelectricpropertiesofmos2mose2typeiheterojunctionbydftandthelandauerapproach
AT johnnogan determiningtheelectronicstructureandthermoelectricpropertiesofmos2mose2typeiheterojunctionbydftandthelandauerapproach
AT manuelramos determiningtheelectronicstructureandthermoelectricpropertiesofmos2mose2typeiheterojunctionbydftandthelandauerapproach