Exploring the β symmetry of supergravity

Abstract Kaluza-Klein reductions of low energy string effective actions possess a continuous O(d, d) symmetry. The non-geometric elements of this group, parameterized by a bi-vector β, are not inherited from the symmetries of the higher-dimensional theory, but constitute instead a symmetry enhanceme...

Full description

Bibliographic Details
Main Authors: Walter H. Baron, Diego Marqués, Carmen A. Núñez
Format: Article
Language:English
Published: SpringerOpen 2023-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2023)006
Description
Summary:Abstract Kaluza-Klein reductions of low energy string effective actions possess a continuous O(d, d) symmetry. The non-geometric elements of this group, parameterized by a bi-vector β, are not inherited from the symmetries of the higher-dimensional theory, but constitute instead a symmetry enhancement produced by the isometries of the background. The realization of this enhancement in the parent theory was recently defined as β symmetry, a powerful tool that allows to avoid the field reparameterizations of the Kaluza-Klein procedure. In this paper we further explore this symmetry and its impact on the first order α′-corrections. We derive the β transformation rules from the frame formulation of Double Field Theory (DFT), and connect them to the corresponding rules in the Metsaev-Tseytlin and Bergshoeff-de Roo supergravity schemes. It follows from our results that β symmetry is a necessary condition for the uplift of string α′-expansions to DFT.
ISSN:1029-8479