Temporal Variability of Drought in Nine Agricultural Regions of China and the Influence of Atmospheric Circulation

In recent decades, the severe drought across agricultural regions of China has had significant impact on agriculture. The standardized precipitation evapotranspiration index (SPEI) has been widely used for drought analyses; however, SPEI is prone to be affected by potential evapotranspiration (PET)....

Full description

Bibliographic Details
Main Authors: Haowei Sun, Haiying Hu, Zhaoli Wang, Chengguang Lai
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/11/9/990
Description
Summary:In recent decades, the severe drought across agricultural regions of China has had significant impact on agriculture. The standardized precipitation evapotranspiration index (SPEI) has been widely used for drought analyses; however, SPEI is prone to be affected by potential evapotranspiration (PET). We thus examined the correlations between soil moisture anomalies and the SPEI calculated by the Thornthwaite, Hargreaves, and Penman–Monteith (PM) equations to select the most suitable for drought research. Additionally, the Mann–Kendall and wavelet analysis were used to investigate drought trends and to analyze and the impact of atmospheric circulation on drought in China from 1961 to 2018. The results showed that (1) PET obtained from the PM equation is the most suitable for SPEI calculation; (2) there were significant wetting trends in Northern China and the whole Chinese mainland and most of the wetting mutation points occurred in the 1970s and 1980s and the significant inter-annual oscillations period in the Chinese mainland was 2–4 years; (3) the Chinese mainland and Northern China are strongly influenced by West Pacific Trade Wind, while Western Pacific Subtropical High Intensity and Pacific Subtropical High Area have primary impact on Southern China.
ISSN:2073-4433