Active elastic thin shell theory for cellular deformations

We derive the equations for a thin, axisymmetric elastic shell subjected to an internal active stress giving rise to active tension and moments within the shell. We discuss the stability of a cylindrical elastic shell and its response to a localized change in internal active stress. This description...

Full description

Bibliographic Details
Main Authors: Hélène Berthoumieux, Jean-Léon Maître, Carl-Philipp Heisenberg, Ewa K Paluch, Frank Jülicher, Guillaume Salbreux
Format: Article
Language:English
Published: IOP Publishing 2014-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/16/6/065005
Description
Summary:We derive the equations for a thin, axisymmetric elastic shell subjected to an internal active stress giving rise to active tension and moments within the shell. We discuss the stability of a cylindrical elastic shell and its response to a localized change in internal active stress. This description is relevant to describe the cellular actomyosin cortex, a thin shell at the cell surface behaving elastically at a short timescale and subjected to active internal forces arising from myosin molecular motor activity. We show that the recent observations of cell deformation following detachment of adherent cells (Maître J-L et al 2012 Science http://dx.doi.org/10.1126/science.1225399 338 http://dx.doi.org/10.1126/science.1225399 ) are well accounted for by this mechanical description. The actin cortex elastic and bending moduli can be obtained from a quantitative analysis of cell shapes observed in these experiments. Our approach thus provides a non-invasive, imaging-based method for the extraction of cellular physical parameters.
ISSN:1367-2630