Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark
Suspended mussel aquaculture has been proposed as a possible mechanism by which to remove excess nutrients from eutrophic marine areas. In this study, seasonal mussel growth and water clarification (through seston and phytoplankton depletion) were studied at a commercial-scale nutrient extractive mu...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Inter-Research
2016-05-01
|
Series: | Aquaculture Environment Interactions |
Online Access: | https://www.int-res.com/abstracts/aei/v8/p311-329/ |
_version_ | 1818820952677416960 |
---|---|
author | P Nielsen PJ Cranford M Maar JK Petersen |
author_facet | P Nielsen PJ Cranford M Maar JK Petersen |
author_sort | P Nielsen |
collection | DOAJ |
description | Suspended mussel aquaculture has been proposed as a possible mechanism by which to remove excess nutrients from eutrophic marine areas. In this study, seasonal mussel growth and water clarification (through seston and phytoplankton depletion) were studied at a commercial-scale nutrient extractive mussel farm in a highly eutrophic Danish fjord. Spatial variations in mussel biomass were examined throughout the year and no significant differences were detected within the farm. Food depletion by mussels was examined at spatial scales ranging from individuals to the entire farm and surrounding area. Phytoplankton depletion on the scale of individual mussel loops, determined using the siphon mimic approach, indicated between 27 and 44% depletion of chlorophyll a (chl a). Farm-scale depletion was detected and visualized based on intensive 3D spatial surveys of the distribution of chl a and total suspended particulate matter concentrations both inside and outside the farmed area. Average reductions in food supply within the farm ranged from 13 to 31%, with some areas showing >50% food depletion. A food depletion model was developed to estimate the optimal mussel density required to maximize removal of excess phytoplankton. The model employed mussel clearance rate estimates derived from the observed magnitude of food depletion within the farm. Model results indicate that the mussel population filtration rate could be increased by 80 to 120% without any negative feedback on mussel growth. This could be accomplished by approximately doubling the standing stock of mussels in the farm, hence doubling the amount of nutrients removed at mussel harvest. |
first_indexed | 2024-12-18T23:00:28Z |
format | Article |
id | doaj.art-1bdc7a66746e46c89cd908ca809b5163 |
institution | Directory Open Access Journal |
issn | 1869-215X 1869-7534 |
language | English |
last_indexed | 2024-12-18T23:00:28Z |
publishDate | 2016-05-01 |
publisher | Inter-Research |
record_format | Article |
series | Aquaculture Environment Interactions |
spelling | doaj.art-1bdc7a66746e46c89cd908ca809b51632022-12-21T20:48:35ZengInter-ResearchAquaculture Environment Interactions1869-215X1869-75342016-05-01831132910.3354/aei00175Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, DenmarkP Nielsen0PJ Cranford1M Maar2JK Petersen3DTU Aqua, Danish Shellfish Center, Øroddevej 80, 7900 Nykøbing Mors, DenmarkFisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, Nova Scotia B4C 4C9, CanadaAarhus University, Department of Bioscience, PO Box 358, Frederiksborgvej 399, 4000 Roskilde, DenmarkDTU Aqua, Danish Shellfish Center, Øroddevej 80, 7900 Nykøbing Mors, DenmarkSuspended mussel aquaculture has been proposed as a possible mechanism by which to remove excess nutrients from eutrophic marine areas. In this study, seasonal mussel growth and water clarification (through seston and phytoplankton depletion) were studied at a commercial-scale nutrient extractive mussel farm in a highly eutrophic Danish fjord. Spatial variations in mussel biomass were examined throughout the year and no significant differences were detected within the farm. Food depletion by mussels was examined at spatial scales ranging from individuals to the entire farm and surrounding area. Phytoplankton depletion on the scale of individual mussel loops, determined using the siphon mimic approach, indicated between 27 and 44% depletion of chlorophyll a (chl a). Farm-scale depletion was detected and visualized based on intensive 3D spatial surveys of the distribution of chl a and total suspended particulate matter concentrations both inside and outside the farmed area. Average reductions in food supply within the farm ranged from 13 to 31%, with some areas showing >50% food depletion. A food depletion model was developed to estimate the optimal mussel density required to maximize removal of excess phytoplankton. The model employed mussel clearance rate estimates derived from the observed magnitude of food depletion within the farm. Model results indicate that the mussel population filtration rate could be increased by 80 to 120% without any negative feedback on mussel growth. This could be accomplished by approximately doubling the standing stock of mussels in the farm, hence doubling the amount of nutrients removed at mussel harvest.https://www.int-res.com/abstracts/aei/v8/p311-329/ |
spellingShingle | P Nielsen PJ Cranford M Maar JK Petersen Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark Aquaculture Environment Interactions |
title | Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark |
title_full | Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark |
title_fullStr | Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark |
title_full_unstemmed | Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark |
title_short | Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark |
title_sort | magnitude spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic skive fjord denmark |
url | https://www.int-res.com/abstracts/aei/v8/p311-329/ |
work_keys_str_mv | AT pnielsen magnitudespatialscaleandoptimizationofecosystemservicesfromanutrientextractionmusselfarmintheeutrophicskivefjorddenmark AT pjcranford magnitudespatialscaleandoptimizationofecosystemservicesfromanutrientextractionmusselfarmintheeutrophicskivefjorddenmark AT mmaar magnitudespatialscaleandoptimizationofecosystemservicesfromanutrientextractionmusselfarmintheeutrophicskivefjorddenmark AT jkpetersen magnitudespatialscaleandoptimizationofecosystemservicesfromanutrientextractionmusselfarmintheeutrophicskivefjorddenmark |