Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM

Considering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow ove...

Full description

Bibliographic Details
Main Authors: Xiang Ren, Hua Su, Hua-Hua Yu, Zheng Yan
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/9/12/759
_version_ 1797461953380089856
author Xiang Ren
Hua Su
Hua-Hua Yu
Zheng Yan
author_facet Xiang Ren
Hua Su
Hua-Hua Yu
Zheng Yan
author_sort Xiang Ren
collection DOAJ
description Considering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow over a cylinder at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> = 3900 based on the cylinder diameter, flow over a wall-mounted hump at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> = 9.36 × 10<sup>5</sup> based on the hump length, and transonic flow over an axisymmetric bump with shock-induced separation at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> = 2.763 × 10<sup>6</sup> based on the bump length, are used to verify WMLES, shear stress transport <i>k</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> DES (SST-DES), and Spalart–Allmaras DES (SA-DES) methods in OpenFOAM. The three flows are increasingly challenging, namely laminar boundary layer separation, turbulent boundary layer separation, and turbulent boundary layer separation under shock interference. The results show that WMLES, SST-DES, and SA-DES methods in OpenFOAM can easily predict the separation position and wake characteristics in the flow around the cylinder, but they rely on the grid scale and turbulent inflow to accurately simulate the latter two flows. The grid requirements of Larsson et al. (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>x</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>y</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>z</mi></mfenced><mo>≈</mo><mrow><mo>(</mo><mn>12</mn><mo>,</mo><mn>50</mn><mo>,</mo><mn>20</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) are the basis for simulating turbulent boundary layers upstream of flow separation. A finer mesh (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>x</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>y</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>z</mi></mfenced><mo>≈</mo><mrow><mo>(</mo><mn>40</mn><mo>,</mo><mn>75</mn><mo>,</mo><mn>40</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) is required to accurately predict the separation and reattachment. The WMLES method is more sensitive to grid scales than the SA-DES method and fails to obtain flow separation under a coarser grid, while SST-DES method can only describe the vortices generated by the separating shear layer, but not within the turbulent boundary layer, and overestimates the separation-reattachment zone based on the grid system in this paper.
first_indexed 2024-03-09T17:26:41Z
format Article
id doaj.art-1be7dd8fb814480cb0d222782f34e7cb
institution Directory Open Access Journal
issn 2226-4310
language English
last_indexed 2024-03-09T17:26:41Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Aerospace
spelling doaj.art-1be7dd8fb814480cb0d222782f34e7cb2023-11-24T12:37:32ZengMDPI AGAerospace2226-43102022-11-0191275910.3390/aerospace9120759Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAMXiang Ren0Hua Su1Hua-Hua Yu2Zheng Yan3Institute of Applied Physics and Computational Mathematics, Beijing 100094, ChinaInstitute of Applied Physics and Computational Mathematics, Beijing 100094, ChinaInstitute of Applied Physics and Computational Mathematics, Beijing 100094, ChinaInstitute of Applied Physics and Computational Mathematics, Beijing 100094, ChinaConsidering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow over a cylinder at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> = 3900 based on the cylinder diameter, flow over a wall-mounted hump at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> = 9.36 × 10<sup>5</sup> based on the hump length, and transonic flow over an axisymmetric bump with shock-induced separation at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> = 2.763 × 10<sup>6</sup> based on the bump length, are used to verify WMLES, shear stress transport <i>k</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> DES (SST-DES), and Spalart–Allmaras DES (SA-DES) methods in OpenFOAM. The three flows are increasingly challenging, namely laminar boundary layer separation, turbulent boundary layer separation, and turbulent boundary layer separation under shock interference. The results show that WMLES, SST-DES, and SA-DES methods in OpenFOAM can easily predict the separation position and wake characteristics in the flow around the cylinder, but they rely on the grid scale and turbulent inflow to accurately simulate the latter two flows. The grid requirements of Larsson et al. (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>x</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>y</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>z</mi></mfenced><mo>≈</mo><mrow><mo>(</mo><mn>12</mn><mo>,</mo><mn>50</mn><mo>,</mo><mn>20</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) are the basis for simulating turbulent boundary layers upstream of flow separation. A finer mesh (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="" open="(" close=")"><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>x</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>y</mi><mo>,</mo><mi>δ</mi><mo>/</mo><mo>Δ</mo><mi>z</mi></mfenced><mo>≈</mo><mrow><mo>(</mo><mn>40</mn><mo>,</mo><mn>75</mn><mo>,</mo><mn>40</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) is required to accurately predict the separation and reattachment. The WMLES method is more sensitive to grid scales than the SA-DES method and fails to obtain flow separation under a coarser grid, while SST-DES method can only describe the vortices generated by the separating shear layer, but not within the turbulent boundary layer, and overestimates the separation-reattachment zone based on the grid system in this paper.https://www.mdpi.com/2226-4310/9/12/759WMLESDESturbulent flowseparated flowOpenFOAM
spellingShingle Xiang Ren
Hua Su
Hua-Hua Yu
Zheng Yan
Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
Aerospace
WMLES
DES
turbulent flow
separated flow
OpenFOAM
title Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
title_full Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
title_fullStr Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
title_full_unstemmed Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
title_short Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
title_sort wall modeled large eddy simulation and detached eddy simulation of wall mounted separated flow via openfoam
topic WMLES
DES
turbulent flow
separated flow
OpenFOAM
url https://www.mdpi.com/2226-4310/9/12/759
work_keys_str_mv AT xiangren wallmodeledlargeeddysimulationanddetachededdysimulationofwallmountedseparatedflowviaopenfoam
AT huasu wallmodeledlargeeddysimulationanddetachededdysimulationofwallmountedseparatedflowviaopenfoam
AT huahuayu wallmodeledlargeeddysimulationanddetachededdysimulationofwallmountedseparatedflowviaopenfoam
AT zhengyan wallmodeledlargeeddysimulationanddetachededdysimulationofwallmountedseparatedflowviaopenfoam