Pathogenesis of Acquired Aplastic Anemia and the Role of the Bone Marrow Microenvironment

Aplastic anemia (AA) is characterized by bone marrow (BM) hypocellularity, resulting in peripheral cytopenias. An antigen-driven and likely auto-immune dysregulated T-cell homeostasis results in hematopoietic stem cell injury, which ultimately leads to the pathogenesis of the acquired form of this d...

Full description

Bibliographic Details
Main Authors: Michael Medinger, Beatrice Drexler, Claudia Lengerke, Jakob Passweg
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-12-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fonc.2018.00587/full
Description
Summary:Aplastic anemia (AA) is characterized by bone marrow (BM) hypocellularity, resulting in peripheral cytopenias. An antigen-driven and likely auto-immune dysregulated T-cell homeostasis results in hematopoietic stem cell injury, which ultimately leads to the pathogenesis of the acquired form of this disease. Auto-immune and inflammatory processes further influence the disease course as well as response rate to therapy, mainly consisting of intensive immunosuppressive therapy and allogeneic hematopoietic cell transplantation. Bone marrow hematopoietic stem and progenitor cells are strongly regulated by the crosstalk with the surrounding microenvironment and its components like mesenchymal stromal cells, also consistently altered in AA. Whether latter is a contributing cause or rather consequence of the disease remains an open question. Overall, niche disruption may contribute to disease progression, sustain pancytopenia and promote clonal evolution. Here we review the existing knowledge on BM microenvironmental changes in acquired AA and discuss their relevance for the pathogenesis and therapy.
ISSN:2234-943X