Resveratrol Pretreatment Attenuates Concanavalin A-induced Hepatitis through Reverse of Aberration in the Immune Response and Regenerative Capacity in Aged Mice

Abstract Loss of regenerative capacity plays a critical role in age-related autoimmune hepatitis. Evidence implicates SIRT1 and p66shc in cell senescence, apoptosis, oxidative stress, and proliferation. This study investigated the effect of resveratrol on concanavalin A (Con A)-induced hepatitis in...

Full description

Bibliographic Details
Main Authors: Tse-Hung Huang, Chin-Chang Chen, Hsuan-Miao Liu, Tzung-Yan Lee, Sue-Heui Shieh
Format: Article
Language:English
Published: Nature Portfolio 2017-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-02881-z
Description
Summary:Abstract Loss of regenerative capacity plays a critical role in age-related autoimmune hepatitis. Evidence implicates SIRT1 and p66shc in cell senescence, apoptosis, oxidative stress, and proliferation. This study investigated the effect of resveratrol on concanavalin A (Con A)-induced hepatitis in aged mice and the roles of SIRT1 and p66shc. Aged mice were administrated resveratrol (30 mg/kg orally) seven times at an interval of 12 h before a single intravenous injection of Con A (20 mg/kg). Results showed that the cytokines, TNF-α, IL-6, IFN-γ, and MCP-1, as well as infiltration of macrophages, neutrophils, and T lymphocytes in liver were dramatically enhanced in the mice given only Con A. The aged mouse livers showed markedly raised oxidative stress and cell apoptosis. This oxidative stress further aggravated regenerative dysfunction as indicated by the decreased levels of Ki67, PCNA, Cyclin D1, and Cdk2. Conversely, these phenomena were attenuated by pretreatment with resveratrol. Moreover, resveratrol suppressed the elevation of p66shc in the liver by reversing Con-A-mediated downregulation of SIRT1. The findings suggest that resveratrol protected against Con A-induced hepatitis in aged mice by attenuating an aberration of immune response and liver regeneration, partially via the mechanism of SIRT1-mediated repression of p66shc expression.
ISSN:2045-2322